The Design, Implementation, and Evaluation of Cells:
A Virtual Smartphone Architecture

CHRISTOFFER DALL, JEREMY ANDRUS, ALEXANDER VAN'T HOF,
OREN LAADAN, and JASON NIEH, Columbia University

Smartphones are increasingly ubiquitous, and many users carry multiple phones to accommodate work,
personal, and geographic mobility needs. We present Cells, a virtualization architecture for enabling
multiple virtual smartphones to run simultaneously on the same physical cellphone in an isolated, secure
manner. Cells introduces a usage model of having one foreground virtual phone and multiple background
virtual phones. This model enables a new device namespace mechanism and novel device proxies that
integrate with lightweight operating system virtualization to multiplex phone hardware across multiple
virtual phones while providing native hardware device performance. Cells virtual phone features include
fully accelerated 3D graphics, complete power management features, and full telephony functionality with
separately assignable telephone numbers and caller ID support. We have implemented a prototype of Cells
that supports multiple Android virtual phones on the same phone. Our performance results demonstrate
that Cells imposes only modest runtime and memory overhead, works seamlessly across multiple hardware
devices including Google Nexus 1 and Nexus S phones, and transparently runs Android applications at
native speed without any modifications.

Categories and Subject Descriptors: C.0 [Computer Systems Organization]: General—System architec-
tures; D.4.6 [Operating Systems]: Security and Protection; D.4.7 [Operating Systems]: Organization and
Design; D.4.8 [Operating Systems]|: Performance; H.5.2 [Information Interfaces and Presentation]:
User Interfaces—User-centered design; 1.3.4 [Computer Graphics]: Graphics Utilities—Virtual device
interfaces

General Terms: Design, Experimentation, Measurement, Performance, Security
Additional Key Words and Phrases: Android, smartphones, virtualization

ACM Reference Format:

Dall, C., Andrus, J., Van’t Hof, A., Laadan, O., and Nieh, J. 2012. The design, implementation, and evalua-
tion of cells: A virtual smartphone architecture. ACM Trans. Comput. Syst. 30, 3, Article 9 (August 2012),
31 pages.

DOI = 10.1145/2324876.2324877 http://doi.acm.org/10.1145/2324876.2324877

1. INTRODUCTION

The preferred platform for a user’s everyday computing needs is shifting from tradi-
tional desktop and laptop computers toward mobile smartphone devices [CNN 2011].

Parts of this work appeared as Cells: A virtual mobile smartphone architecture in Proceedings of the 23rd
ACM Symposium on Operating Systems Principles.

This work was supported in part by NSF grants CNS-1162447, CNS-1018355, CNS-0914845, CNS-0905246,
AFOSR MURI grant FA9550-07-1-0527, and a Google Research Award.

In accordance with a Columbia University-wide policy to promote transparency in research, Jason Nieh
discloses an ownership interest in Cellrox.

Author’s address: C. Dall, J. Andrus, A. Van’t Hof, O. Laadan, and J. Nieh, Computer Science Department,
Columbia University, 450 Computer Science Building, 1214 Amsterdam Avenue, Mailcode: 0401, New York,
NY 10027-7003; email: cdall@cs.columbia.edu.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701, USA, fax +1 (212)
869-0481, or permissions@acm.org.

(© 2012 ACM 0734-2071/2012/08-ART9 $15.00

DOI 10.1145/2324876.2324877 http://doi.acm.org/10.1145/2324876.2324877

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:2 C. Dall et al.

Smartphones are becoming an increasingly important work tool for professionals who
rely on them for telephone, text messaging, email, Web browsing, contact and calen-
dar management, news, and location-specific information. These same functions as
well as the ability to play music, movies, and games also make smartphones a useful
personal tool. In fact, hundreds of thousands of smartphone applications are available
for users to download and try through various online application stores. The ease of
downloading new software imposes a risk on users as malicious software can easily
access sensitive data with the risk of corrupting it or even leaking it to third parties
[ZDNet 2011]. For this reason, companies often lock down the smartphones they allow
to connect to the company network, and at least require the ability to wipe clean such
smartphones if they are lost, hacked, or their respective owner leaves the company.
The result is that many users have to carry separate work and personal phones. Ap-
plication developers also carry additional phones for development to avoid having a
misbehaving application prototype corrupt their primary phone. Parents sometimes
wish they had additional phones when their children use the parent’s smartphone for
entertainment and end up with unexpected charges due to accidental phone calls or
unintended in-app purchases.

Virtual machine (VM) mechanisms have been proposed that enable two separate
and isolated instances of a smartphone software stack to run on the same ARM hard-
ware [Barr et al. 2010; Dall and Nieh 2010; Hwang et al. 2008; Open Kernel Labs
2011]. These approaches require substantial modifications to both user and kernel
levels of the software stack. Paravirtualization is used in all cases since the ARM
architecture is not virtualizable and proposed ARM virtualization extensions are not
yet available in hardware. While VMs are useful for desktop and server computers,
applying these hardware virtualization techniques to smartphones has two crucial
drawbacks. First, smartphones are more resource constrained, and running an entire
additional operating system (OS) and user space environment in a VM imposes high
overhead and limits the number of instances that can run. Slow system responsive-
ness is less acceptable on a smartphone than on a desktop computer since smartphones
are often used for just a few minutes or even seconds at a time. Second, smartphones
incorporate a plethora of devices that applications expect to be able to use, such as
GPS, cameras, and GPUs. Existing approaches provide no effective mechanism to en-
able applications to directly leverage these hardware device features from within VMs,
severely limiting the overall system performance and making existing approaches un-
usable on a smartphone.

We present Cells, a new, lightweight virtualization architecture for enabling mul-
tiple virtual phones (VPs) to run simultaneously on the same smartphone hardware
with high performance. Cells does not require running multiple OS instances. It uses
lightweight OS virtualization to provide virtual namespaces that can run multiple VPs
on a single OS instance. Cells isolates VPs from one another, and ensures that buggy
or malicious applications running in one VP cannot adversely impact other VPs. Cells
provides a novel file system layout based on unioning to maximize sharing of common
read-only code and data across VPs, minimizing memory consumption and enabling
additional VPs to be instantiated without much overhead.

Cells takes advantage of the small display form factors of smartphones, which gen-
erally display only a single application at a time, and introduces a usage model having
one foreground VP that is displayed and multiple background VPs that are not dis-
played at any given time. This simple yet powerful model enables Cells to provide
novel kernel-level and user-level device namespace mechanisms to efficiently multi-
plex hardware devices across multiple VPs, including proprietary or opaque hardware
such as the baseband processor, while maintaining native hardware performance. The
foreground VP is always given direct access to hardware devices. Background VPs are

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:3

given shared access to hardware devices when the foreground VP does not require
exclusive access. Visible applications are always running in the foreground VP and
those applications can take full advantage of any available hardware feature, such as
hardware-accelerated graphics. Since foreground applications have direct access to
hardware, they perform as fast as when they are running natively.

Cells provides individual telephone numbers for each VP without the need for mul-
tiple SIM cards through using a VoIP service. Incoming and outgoing calls use the
cellular network, not VoIP, and are routed through the VoIP service as needed to pro-
vide both incoming and outgoing caller ID functionality for each VP. Cells uses this
combination of a VoIP service and the cellular network to allow users to make and
receive calls using their standard cell phone service, while maintaining per-VP phone
numbers and caller ID features. Cells leverages all of the standard call multiplexing
available in Android for handling multiple calls for a single phone to handle multiple
calls across virtual phones. For example, if a user switches the foreground VP into the
background during a phone call, Cells can place the active call on hold and allow the
user to make another outgoing call from the new foreground VP. Wi-Fi connections
and the cellular network used for data connectivity are fully supported and network
connections are completely isolated between VPs.

We have implemented a Cells prototype that supports multiple virtual Android
phones on the same mobile device. Each VP can be configured the same or completely
different from other VPs. The prototype has been tested to work with multiple ver-
sions of Android, including the most recent open-source version, version 4.0.3. It works
seamlessly across multiple hardware devices, including Google Nexus 1 and Nexus S
phones. Our experimental results, running real Android applications in up to five VPs
on Nexus 1 and Nexus S phones, demonstrate that Cells imposes almost no runtime
overhead and only modest memory overhead. Cells scales to support far more phone
instances on the same hardware than VM-based approaches. Cells is the first virtual-
ization system that fully supports available hardware devices with native performance
including GPUs, sensors, cameras, and touchscreens, and transparently runs all ap-
plications in VPs without any modifications.

We present the design and implementation of Cells. Section 2 describes the Cells
usage model. Section 3 provides an overview of the system architecture. Sections 4 and
5 describe graphics and power management virtualization, respectively, using kernel
device namespaces. Sections 6 and 7 describe telephony and wireless network virtu-
alization, respectively, using user-level device namespaces. Section 8 presents experi-
mental results. Section 9 discusses related work. Finally, we present some concluding
remarks.

2. USAGE MODEL

Cells runs multiple VPs on a single hardware phone. Each VP runs a standard Android
environment capable of making phone calls, running unmodified Android applications,
using data connections, interacting through the touch screen, utilizing the accelerom-
eter, and everything else that a user can normally do on the hardware. Each VP is
completely isolated from other VPs and cannot inspect, tamper with, or otherwise ac-
cess any other VP.

Given the limited size of smartphone screens and the ways in which smartphones
are used, Cells only allows a single VP, the foreground VP, to be displayed at any
time. We refer to all other VPs that are running but not displayed as, background
VPs. Background VPs are still running on the system in the background and are ca-
pable of receiving system events and performing tasks, but do not render content on

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:4 C. Dall et al.

the screen. A user can easily switch among VPs by selecting one of the background
VPs to become the foreground one. This can be done, for example, using a custom
key-combination to cycle through the set of running VPs, or using a swipe gesture
on the home screen of a VP. Each VP also has an application that can be launched
to see a list of available VPs, and to switch any of these to the foreground. The sys-
tem can force a new VP to become the foreground VP as a result of an event, such
as an incoming call or text message. For security and convenience reasons, a no-auto-
switch can be set to prevent background VPs from being switched to the foreground
without explicit user action, preventing background VPs from stealing input focus or
device data. An auto-lock can be enabled forcing a user to unlock a VP using a pass-
code or gesture when it transitions from background to foreground. Section 3 discusses
how the foreground-background usage model is fundamental to the Cells virtualization
architecture.

VPs are created and configured on a PC and downloaded to a phone via USB. A
VP can be deleted by the user, but its configuration is password protected and can
only be changed from a PC given the appropriate credentials. For example, a user
can create a VP and can decide to later change various options regarding how the
VP is run and what devices it can access. On the other hand, IT administrators can
also create VPs that users can download or remove from their phones, but cannot be
reconfigured by users. This is useful for companies that may want to distribute locked
down VPs.

Each VP can be configured to have different access rights for different devices. For
each device, a VP can be configured to have no access, shared access, or exclusive
access. Some settings may not be available on certain devices; shared access is, for
example, not available for the framebuffer since only a single VP is displayed at any
time. These per device access settings provide a highly flexible security model that can
be used to accommodate a wide range of security policies.

No access means that applications running in the VP cannot access the given de-
vice at any time. For example, VPs with no access to the GPS sensor would never
be able to track location despite any user acceptances of application requests to allow
location tracking. Users often acquiesce to such privacy invasions because an applica-
tion will not work without such consent even if the application has no need for such
information. By using the no access option Cells enables IT administrators to cre-
ate VPs that allow users to install and run such applications without compromising
privacy.

Shared access means that when a given VP is running in the foreground, other
background VPs can access the device at the same time. For example, a foreground
VP with shared access to the audio device would allow a background VP with shared
access to play music.

Exclusive access means that when a given VP is running in the foreground, other
background VPs are not allowed to access the device. For example, a foreground VP
with exclusive access to the microphone would not allow background VPs to access the
microphone, preventing applications running in background VPs from eavesdropping
on conversations or leaking information. This kind of functionality is essential for
supporting secure VPs. Exclusive access may be used in conjunction with the no-auto-
switch to ensure that events cannot cause a background VP to move to the foreground
and gain access to devices as a means to circumvent the exclusive access rights of
another VP.

In addition to device access rights, Cells leverages existing OS virtualization tech-
nology to prevent privilege escalation attacks in one VP from compromising the entire
device. Both user credentials and process IDs are isolated between VPs; the root user
in one VP has no relation to the root user in any other VP.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:5

Root Virtual Phone 1 Virtual Phone 2
Namespace
= = = = = =
> > > > > >
x x x x x x
| CellD | | RIL* | 2 2 2 2 = 2
o a o o a a
| WiFi controls |
Full Android user Full Android user
| NAT | space space
A A A A} A A
/proc | |
' 1]
______] |
: ! IPC) |
: FooF = === ===
v v Y A \ 4 \ A\ \4 A\ \ 4
o % % %) 2
=3 Szl (2|3 8||3] |2
(0] 5 = = £
o g g E m $
- g
Iy 7y
Device Namespace
Linux Kernel

*RIL: Vendor Radio Interface Layer library is loaded by CellD

Fig. 1. Overview of Cells architecture.

3. SYSTEM ARCHITECTURE

Figure 1 provides an overview of the Cells system architecture. We describe Cells us-
ing Android since our prototype is based on it. Each VP runs a stock Android user
space environment. Cells leverages lightweight OS virtualization [Bhattiprolu et al.
2008; Osman et al. 2002] to isolate VPs from one another. Each VP has its own private
virtual namespace so that VPs can run concurrently and use the same OS resource
names inside their respective namespaces, yet be isolated from and not conflict with
each other. This is done by transparently remapping OS resource identifiers to virtual
ones that are used by processes within each VP. File system paths, process identifiers
(PIDs), IPC identifiers, network interface names, and user names (UIDs) must all be
virtualized to prevent conflicts and ensure that processes running in one VP cannot
see processes in other VPs. The Linux kernel, including the version used by Android,
provides virtualization for these identifiers through namespaces [Bhattiprolu et al.
2008]. For example: the file system (F'S) is virtualized using mount namespaces that
allow different independent views of the FS and provide isolated private F'S jails for
VPs [Laadan et al. 2007]. Cells uses a single OS kernel across all VPs that virtual-
izes identifiers, kernel interfaces, and hardware resources such that several complete

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:6 C. Dall et al.

Table I. Android Devices

Device Description

Alarm#* Wake-lock aware RTC alarm timer
Audio Audio I/O (speakers, microphone)
Binder* IPC framework

Bluetooth Short range communication
Camera Video and still-frame input
Framebuffer | Display output

GPU Graphics Processing Unit

Input Touchscreen and input buttons
LEDs Backlight and indicator LEDs
Logger* Lightweight RAM log driver
LMK* Low memory killer

Network Wi-Fi and Cellular data

Pmem* Contiguous physical memory allocator
Power* Power management framework
Radio Cellular phone (GSM, CDMA)
Sensors Accelerometer, GPS, proximity

*custom Google drivers.

execution environments, each containing several processes each running in their own
Dalvik VM, can exist side-by-side in virtual OS sandboxes.

Cells is complementary to the use of the Dalvik process virtual machine (VM) in
Android. The Dalvik VM is similar to a Java VM in that it provides a platform-
independent environment for executing Java-like bytecodes. In Android, each applica-
tion is run using a separate process with its own Dalvik VM instance. Dalvik provides
some level of process isolation for each application, but all applications share a single
smartphone environment. Dalvik provides no mechanism to support multiple smart-
phone environments. On the other hand, Cells provides an abstraction for the entire
Android user environment to support multiple complete and isolated virtual smart-
phone environments. Each environment has its own system settings, installed appli-
cations, and application-specific settings. While Dalvik process virtualization focuses
on enabling platform-independence and application isolation, Cells OS virtualization
focuses on enabling multiple complete smartphone environments.

Basic OS virtualization is, however, insufficient to run a complete smartphone user
space environment. Virtualization mechanisms have primarily been used in headless
server environments with relatively few devices, such as networking and storage,
which can already be virtualized in commodity OSes such as Linux. These mecha-
nisms have been extended to desktop computers by virtualizing industry standard
interconnection protocols such as PCI or USB. Smartphone applications, however, ex-
pect to be able to directly interact with a plethora of hardware devices, many of which
are physically not designed to be multiplexed. Furthermore, tightly integrated smart-
phone hardware is generally accessed through vendor-specific memory-mapped control
interfaces, not industry standard interconnection protocols. OS device virtualization
support is non-existent for these devices. For Android, at least the devices listed in
Table I must be fully supported, which include both hardware devices and pseudo de-
vices unique to the Android environment. Three requirements for supporting devices
must be met.

(1) Support exclusive or shared access across VPs.

(2) Never leak sensitive information between VPs.

(3) Prevent malicious applications in one VP from interfering with device access by
another VPs.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:7

Cells meets all three requirements in the tightly integrated, and often proprietary,
smartphone ecosystem. It does so by integrating novel kernel-level and user-level de-
vice virtualization methods to present a complete virtual smartphone OS environ-
ment. Kernel-level mechanisms provide transparency and performance. User-level
mechanisms provide portability and transparency when the user space environment
provides interfaces that can be leveraged for virtualization. For proprietary devices
with completely closed software stacks, user-level virtualization is necessary.

3.1. Kernel-Level Device Virtualization

Cells introduces a new kernel-level mechanism, device namespaces, that provides iso-
lation and efficient hardware resource multiplexing in a manner that is completely
transparent to applications. Figure 1 shows how device namespaces are implemented
within the overall Cells architecture. Unlike PID or UID namespaces in the Linux
kernel, which virtualize process identifiers, a device namespace does not virtualize
identifiers. It is designed to be used by individual device drivers or kernel subsystems
to tag data structures and to register callback functions. Callback functions are called
when a device namespace changes state. Each VP uses a unique device namespace
for device interaction. Cells leverages its foreground-background VP usage model to
register callback functions that are called when the VP changes between foreground
and background state. This enables devices to be aware of the VP state and change
how they respond to a VP depending on whether it is visible to the user and therefore
the foreground VP, or not visible to the user and therefore one of potentially multiple
background VPs. The usage model is crucial for enabling Cells to virtualize devices
efficiently and cleanly.

Cells virtualizes existing kernel interfaces based on three methods of implementing
device namespace functionality. The first method is to create a device driver wrapper
using a new device driver for a virtual device. The wrapper device then multiplexes
access and communicates on behalf of applications to the real device driver. The wrap-
per typically passes through all requests from the foreground VP, and updates device
state and access to the device when a new VP becomes the foreground VP. For ex-
ample, Cells use a device driver wrapper to virtualize the framebuffer as described in
Section 4.1.

The second method is to modify a device subsystem to be aware of device names-
paces. For example, the input device subsystem in Linux handles various devices such
as the touchscreen, navigation wheel, compass, GPS, proximity sensor, light sensor,
headset input controls, and input buttons. The input subsystem consists of the input
core, device drivers, and event handlers, the latter being responsible for passing input
events to user space. By default in Linux, input events are sent to any process that is
listening for them, but this does not provide the isolation needed for supporting VPs.
To enable the input subsystem to use device namespaces, Cells only has to modify the
event handlers so that, for each process listening for input events, event handlers first
check if the corresponding device namespace is in the foreground. If it is not, the event
is not raised to that specific process. The implementation is simple, and no changes
are required to device drivers or the input core. As another example, virtualization of
the power management subsystem is described in Section 5.

The third method of kernel-level device namespace virtualization is to modify a de-
vice driver to be aware of device namespaces. For example, Android includes a number
of custom pseudodrivers that are not part of an existing kernel subsystem, such as the
Binder IPC mechanism. To provide isolation among VPs, Cells needs to ensure that
under no circumstances can a process in one VP gain access to Binder instances in
another VP. This is done by modifying the Binder driver so that instead of allowing

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:8 C. Dall et al.

Binder data structures to reference a single global list of all processes, they reference
device namespace isolated lists and only allow communication between processes as-
sociated with the same device namespace. A Binder device namespace context is only
initialized when the Binder device file is first opened, resulting in almost no overhead
for future accesses. While the device driver itself needs to be modified, pseudodevice
drivers that are not hardware-specific and thus changes only need to be made once
for all hardware platforms. In some cases, however, it may be necessary to modify
a hardware-specific device driver to make it aware of device namespaces. For most
devices, this is straightforward and involves duplicating necessary driver state upon
device namespace creation and tagging the data describing that state with the device
namespace. Even this can be avoided if the device driver provides some basic capabil-
ities as described in Section 4.2, which discusses GPU virtualization.

3.2. User-Level Device Virtualization

In addition to kernel-level device namespace mechanisms, Cells introduces a user-level
device namespace proxy mechanism that offers similar functionality for devices, such
as the cellular baseband processor, that are proprietary and entirely closed source.
Cells also uses this mechanism to virtualize device configuration, such as Wi-Fi, which
occurs in user space. Sections 6 and 7 describe how this user-level proxy approach is
used to virtualize telephony and wireless network configuration.

Figure 1 shows the relationship between VPs, kernel-level device namespaces, and
user-level device namespace proxies which are contained in a root namespace. Cells
works by booting a minimal init environment in a root namespace which is not visible
to any VP and is used to manage individual VPs. The root namespace is considered
part of the trusted computing base and processes in the root namespace have full
access to the entire file system. The init environment starts a custom process, CellD,
which manages the starting and switching of VPs between operating in the background
or foreground. Kernel device namespaces export an interface to the root namespace
through the /proc filesystem that is used to switch the foreground VP and set access
permissions for devices. CellD also coordinates user space virtualization mechanisms
such as the configuration of telephony and wireless networking.

To start a new VP, CellD mounts the VP filesystem, clones itself into a new process
with separate namespaces, and starts the VP’s init process to boot up the user space
environment. CellD also sets up the limited set of IPC sockets accessible to processes in
the VP for communicating with the root namespace. The controlled set of IPC sockets
is the only mechanism that can be used for communicating with the root namespace;
all other IPC mechanism are internal to the respective VP. Cells also leverages existing
Linux kernel frameworks for resource control to prevent resource starvation from a
single VP [Kolyshkin 2011].

3.3. Scalability and Security

Cells uses three scalability techniques to enable multiple VPs running the same An-
droid environment to share code and reduce memory usage. First, the same base file
system is shared read-only among VPs. To provide a read-write file system view for
a VP, file system unioning [Wright et al. 2006] is used to join the read-only base file
system with a writable file system layer by stacking the latter on top of the former.
This creates a unioned view of the two: file system objects, namely files and directo-
ries, from the writable layer are always visible, while objects from the read-only layer
are only visible if no corresponding object exists in the other layer. Second, when a
new VP is started, Cells enables Linux Kernel Samepage Merging (KSM) for a short
time to further reduce memory usage by finding anonymous memory pages used by the

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:9

user space environment that have the same contents, then arranging for one copy to be
shared among the various VPs [Waldspurger 2002]. Third, Cells leverages the Android
low memory killer to increase the total number of VPs it is possible to run on a device
without sacrificing functionality. The Android low memory killer kills background and
inactive processes consuming large amounts of RAM. Android starts these processes
purely as an optimization to reduce application startup-time, so these processes can
be killed and restarted without any loss of functionality. Critical system processes are
never chosen to be killed, and if the user requires the services of a background process
which was killed, the process is simply restarted.

Cells uses four techniques to isolate all VPs from the root namespace and from one
another, thereby securing both system and individual VP data from malicious reads or
writes. First, user credentials, virtualized through UID namespaces, isolate the root
user in one VP from the root user in the root namespace or the root user in any other
VP. Second, kernel-level device namespaces isolate device access and associated data;
no data or device state may be accessed outside a VP’s device namespace. Third, mount
namespaces provide a unique and separate FS view for each VP; no files belonging to
one VP may be accessed by another VP. Fourth, CellD removes the capability to create
device nodes inside a VP, preventing processes from gaining direct access to Linux
devices outside their environment, for example, by re-mounting block devices. These
isolation techniques secure Cells system data from each VP, and individual VP data
from other VPs. For example, a privilege escalation or root attack compromising one
VP has no access to the root namespace or any other VP, and cannot use device node
creation or super-user access to read or write data in any other VP.

4. GRAPHICS

The display and its associated graphics hardware are some of the most important de-
vices in smartphones. Applications expect to take full advantage of any hardware
display acceleration or graphics processing unit (GPU) available on the smartphone.
In fact, modern mobile operating systems make heavy use of hardware graphics ac-
celeration for simple user interactions such as swiping between home screens or dis-
playing menus, and the smooth hardware-assisted graphics is crucial for a rich user
experience. Android, for example, uses a process called the SurfaceFlinger to com-
pose application windows onto the screen. The SurfaceFlinger process uses the GPU
to efficiently blend, animate, or transition application windows for display. Android
also makes the GPU available to individual applications through the Open Graphics
Library embedded systems API, or OpenGL ES. This library specifies a standard in-
terface to accelerated 2D and 3D graphics processing hardware.

Cells virtualizes the display and drawing hardware at two distinct yet intercon-
nected layers: the Linux framebuffer interface used for basic display rendering, and
the GPU used by OpenGL for more advanced drawing operations. The standard Linux
framebuffer interface used by Android provides an abstraction to a physical display
device through a piece of memory called screen memory. Screen memory is dedicated
to and controlled exclusively by the display device, and its contents correspond exactly
to pixels shown on the display. For performance reasons, screen memory is mapped
and written to directly by both user space processes and GPU hardware. The GPU,
however, is only manipulated by user space processes through an OpenGL API, and
while the API itself is open, its implementation is often proprietary. The performance
critical nature of graphics processing, direct memory mapping of screen memory to
processes and kernel drivers, and the use of proprietary drawing libraries present new
challenges for virtualizing mobile devices.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:10 C. Dall et al.

4.1. Framebuffer

To virtualize framebuffer access in multiple VPs, Cells leverages the kernel-level de-
vice namespace and its foreground-background usage model in a new multiplexing
framebuffer device driver, mux_fb, which serves as a simple, device-independent wrap-
per to a hardware framebuffer driver. The mux_fb driver registers as a standard frame-
buffer device and multiplexes access to a single physical device. The foreground VP is
given exclusive access to the screen memory and display hardware while each back-
ground VP maintains virtual hardware state and renders any output to a virtual
screen memory buffer in system RAM, referred to as the backing buffer. VP access
to the mux_fb driver is isolated through the VP’s associated device namespace such
that a unique virtual device state and backing buffer is associated with each VP. The
mux_fb driver currently supports multiplexing a single physical framebuffer device, but
more complicated multiplexing schemes involving multiple physical devices could be
accomplished in a similar manner.

In Linux, the basic framebuffer usage pattern involves three types of accesses:
mmaps, standard control ioctls, and custom ioctls. When a process mmaps an open
framebuffer device file, the driver is expected to map its associated screen memory
into the process’ address space allowing the process to render directly on the display.
A process controls and configures the framebuffer hardware state through a set of stan-
dard control ioctls defined by the Linux framebuffer interface that can, for example,
change the pixel format. Each framebuffer device may also define custom ioctls which
can be used to perform accelerated drawing or rendering operations.

Cells passes all accesses to the mux_fb device from the foreground VP directly to
the hardware driver. This includes control ioctls as well as custom ioctls, allowing
applications in the foreground VP to take full advantage of any custom ioctls imple-
mented by the physical device driver and used, for example, to accelerate rendering.
When an application running in the foreground VP mmaps an open mux_fb device, the
mux_fb driver simply maps the physical screen memory controlled by the hardware
driver. This creates the same zero-overhead pass-through to the screen memory as on
native systems.

Cells does not pass any accesses to the mux_fb driver from background VPs to the
hardware back end, ensuring that the foreground VP has exclusive hardware access.
Standard control ioctls are applied to virtual hardware state maintained in RAM.
Custom ioctls, by definition, perform nonstandard functions such as graphics acceler-
ation or memory allocation, and therefore accesses to these functions from background
VPs must be at least partially handled by the hardware driver which defined them.
Instead of passing the ioctl to the hardware driver, Cells uses a new notification API
that allows the hardware driver to appropriately virtualize the access. If the hardware
driver does not register for this new notification, Cells can handle custom ioctls in
one of two ways. One way would be to simply return an error code. Another way would
be to block the calling process when the custom ioctl is called from a background VP;
the process would be unblocked when the VP is switched into the foreground, allowing
the ioctl to be handled by the hardware driver. Returning an error code was sufficient
for both the Nexus 1 and Nexus S systems. If returning an error code causes the back-
ground VP to become unstable, Cells can block the calling process allowing the ioctl to
be handled by the hardware driver once the VP is switched into the foreground. When
an application running in a background VP mmaps the framebuffer device, the mux_fb
driver will map the appropriate backing buffer into the process’ virtual address space.
This gives applications running in background VPs zero-overhead access to virtualized
screen memory.

Not only do background VPs have zero-overhead access to virtual screen memory,
but Cells also provides each background VP direct access to drawing hardware when

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:11

it is switched into the foreground. Switching the display from a foreground VP to
a background VP is accomplished in four steps, all of which must occur before any
additional framebuffer operations are performed:

(1) screen memory remapping;

(2) screen memory deep copy;

(3) hardware state synchronization;
(4) GPU coordination.

Screen memory remapping is done by altering the page table entries for each pro-
cess that has mapped framebuffer screen memory, and redirecting virtual addresses
in each process to new physical locations. Processes running in the VP which is to be
moved into the background have their virtual addresses remapped to backing mem-
ory in system RAM, and processes running in the VP that is to become the fore-
ground have their virtual addresses remapped to physical screen memory. The screen
memory deep copy is done by copying the contents of the screen memory into the
previous foreground VP’s backing buffer and copying the contents of the new fore-
ground VP’s backing buffer into screen memory. This copy is not strictly necessary
if the new foreground VP completely redraws the screen. Hardware state synchro-
nization is done by saving the current hardware state into the virtual state of the
previous foreground VP and then setting the current hardware state to the new fore-
ground VP’s virtual hardware state. Because the display device only uses the current
hardware state to output the screen memory, there is no need to correlate particu-
lar drawing updates with individual standard control ioctls; only the accumulated
virtual hardware state is needed thus avoiding costly record/replay of framebuffer
ioctls. GPU coordination, discussed in Section 4.2, involves notifying the GPU of the
screen memory address switch so that it can update any internal graphics memory
mappings.

To better scale the Cells framebuffer virtualization, backing buffers in system RAM
could be reduced to a single memory page which is mapped into the entire screen
memory virtual address region of background VPs. This optimization not only saves
memory, but also eliminates the need for the screen memory deep copy. However, it
does require the VP’s user space environment to redraw the entire screen when it
becomes the foreground VP. Fortunately, redraw overhead is minimal, and Android
conveniently provides this functionality through the fbearlysuspend driver discussed
in Section 5.1.

In our testing, we found that the Android gralloc library (used to allocate graphics
memory for applications) used framebuffer device identification information, such as
the name of the driver, to enable or disable graphics functionality. In some cases, the
gralloc library would generate errors when unexpected values were returned by the
framebuffer driver. To solve this problem, the mux_fb driver replicates the identifying
information of the hardware driver. Thus, to all user space programs, the device looks
exactly like the underlying physical device that is being multiplexed.

4.2. GPU

Modern smartphone users expect a smooth, responsive, and highly polished experi-
ence from the user interface. Poor quality graphics or clunky animations give users
an out-dated or “old” experience, for example, the lock screen should not simply disap-
pear, it should smoothly transition to a home screen or application perhaps by mak-
ing icons appear to “fly” onto the screen. Smartphone manufacturers use dedicated
graphics processing units, GPUs, to efficently render these complicated animations.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:12 C. Dall et al.

Applications running on the smartphone can also expect to use the GPU to render ap-
plication specific graphics such as scenes in a video game, or custom animations such
as a paper-like page curl in a document reader. This means that all VPs running on
the smartphone require simultaneous, isolated access to the computational power of
the GPU. However, virtualization of graphics resources is an extremely challenging
problem for two primary reasons.

First, there is no standard operating system interface to the GPU. A user space
application interacts with the GPU solely through a graphics API such as OpenGL.
GPU hardware vendors provide an implementation of the OpenGL library that in-
teracts with the physical graphics hardware through often proprietary or opaque in-
terfaces. Details of the GPU hardware and OpenGL library implementation are kept
as closely guarded industry secrets. Graphics driver integration with existing oper-
ating system kernel mechanisms such as memory management are generally obfus-
cated by the closed nature of both the hardware and software using the OS. This leads
to unnecessarily duplicated or overlapping functionality in the driver and user space
libraries.

Second, graphics APIs such as the OpenGL API guarantee processes graphics mem-
ory isolation; one process may not access the graphics memory of another process.
Modern GPUs accomplish this using their own hardware memory management unit
(MMU) to translate “device virtual addresses” into physically addressable RAM. Mem-
ory allocated for graphics processing must therefore be accessible by three different
systems, the OS kernel, the user space process, and the GPU, in four different address
spaces, user virtual, GPU device virtual, kernel linear, and physical addresses. While
it is a primary task of the operating system to manage memory, the closed nature of
graphics hardware and software forces GPU device driver and graphics library devel-
opers to write custom memory management infrastructures with knowledge of the de-
vice specifics. In some cases, small pieces of software run directly on the GPU to handle
hardware events such as IRQs and memory page faults [Imagination Technologies Ltd.
2011]. This autonomy from core operating system management infrastructure creates
a challenging virtualization problem.

Cells solves these challenges, and virtualizes the GPU by leveraging the exist-
ing graphics API and GPU hardware isolation mechanisms in combination with
screen memory virtualization similar to the framebuffer virtualization described in
Section 4.1. Because each VP is essentially an isolated collection of processes running
on the same operating system kernel, a VP can be given direct pass-through access
to the GPU device. The graphics API, such as OpenGL used in Android, utilizes
GPU hardware isolation mechanisms, through the single OS kernel driver, to run
each process in its own graphics context. Entire VPs are isolated from one another
through these graphics contexts, and therefore no further GPU isolation is required.
However, each VP requires isolated screen memory on which to compose the final
scene displayed to the user, and in general the GPU driver requests and uses this
memory directly from within the OS kernel.

Cells solves this problem by leveraging its foreground-background usage model to
provide a virtualization solution similar to framebuffer screen memory remapping.
The foreground VP uses the GPU to render directly into screen memory, while back-
ground VPs will use the same GPU, through the previously discussed isolation mecha-
nisms, to render into their respective backing buffers. When switching the foreground
VP, the GPU driver locates all GPU virtual addresses allocated by the current fore-
ground VP and mapped to the screen memory, and remaps them to point to the VP’s
backing buffer. Correspondingly, the GPU driver locates GPU addresses allocated by
the selected background VP and mapped to its backing buffer, and remaps them
to point to screen memory. To accomplish this remapping, Cells provides a callback

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:13

interface from the mux_fb driver that provides source and destination physical ad-
dresses on each foreground VP switch. This allows the driver to properly locate and
switch GPU virtual address mappings.

While this technique necessitates a certain level of access to the GPU driver, it
does not preclude the possibility of using a proprietary driver so long as it exposes
three basic capabilities. Any driver that implements the Cells GPU virtualization
mechanism must provide the ability to do the following.

(1) remap GPU device virtual addresses to specified physical addresses;

(2) safely reinitialize the GPU device or ignore re-initialization attempts as each VP
running an unmodified user space configuration will attempt to initialize the GPU
on startup.

(3) Ignore device power management and other non-graphics-related hardware state
updates, making it possible to ignore such events from a user space instance run-
ning in a background VP.

Some of these capabilities were already available in the Adreno GPU driver, used
in the Nexus 1, but not all. We added a modest number of lines of code to the Adreno
GPU driver and PowerVR GPU driver, used in the Nexus S, to implement these three
capabilities. For the Linux kernel version 2.6.35 used with Android version 2.3.3, we
added or changed less than 200 lines of code to the Adreno GPU driver and less than
500 lines of code to the PowerVR GPU driver. These are relatively small changes, given
that the Adreno GPU driver is almost 6,000 lines of code and the PowerVR GPU driver
is almost 50,000 lines of code.

While most modern GPUs include an MMU, there are some devices which require
memory used by the GPU to be physically contiguous. For example, the Adreno GPU
can selectively disable the use of the MMU. For Cells GPU virtualization to work under
these conditions, the backing memory in system RAM must be physically contiguous.
This can be done by allocating the backing memory either with kmalloc, or using an
alternate physical memory allocator such as Google’s pmem driver or Samsung’s s3c_mem
driver.

5. POWER MANAGEMENT

To provide Cells users the same power management experience as nonvirtualized
phones, we apply two simple virtualization principles:

(1) background VPs should not be able to put the device into a low power mode,
(2) background VPs should not prevent the foreground VP from putting the device into
a low power mode.

We apply these principles to Android’s custom power management, which is based
on the premise that a mobile phone’s preferred state should be suspended. Android
introduces three interfaces which attempt to extend the battery life of mobile devices
through extremely aggressive power management: early suspend, fbearlysuspend, and
wake locks, also known as suspend blockers [Wysocki 2011b].

The early suspend subsystem is an ordered callback interface allowing drivers
to receive notifications just before a device is suspended and after it resumes.
Cells virtualizes this subsystem by disallowing background VPs from initiating sus-
pend operations. The remaining two Android-specific power management interfaces
present unique challenges and offer insights into aggressive power management
virtualization.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:14 C. Dall et al.

5.1. Frame Buffer Early Suspend

The fbearlysuspend driver exports display device suspend and resume state into user
space. This allows user space to block all processes using the display while the display
is powered off, and redraw the screen after the display is powered on. Power is saved
since the overall device workload is lower and devices such as the GPU may be powered
down or made quiescent. Android implements this functionality with two sysfs files,
wait_for_fb_sleep and wait_for_fb_wake. When a user process opens and reads from
one of these files, the read blocks until the framebuffer device is either asleep or awake,
respectively.

Cells virtualizes fbearlysuspend by making it namespace aware, leveraging the
kernel-level device namespace and foreground-background usage model. In the fore-
ground VP, reading these two sysfs files functions exactly as a nonvirtualized system.
Reads from a background VP always report the device as sleeping. When the fore-
ground VP switches, all processes in all VPs blocked on either of the two files are
unblocked, and the return values from the read calls are based on the new state of
the VP in which the process is running. Processes in the new foreground VP see the
display as awake, processes in the formerly foreground VP see the display as asleep,
and processes running in background VPs that remain in the background continue to
see the display as asleep. This forces background VPs to pause drawing or rendering
which reduces overall system load by reducing the number of processes using hard-
ware drawing resources, and increases graphics throughput in the foreground VP by
ensuring that its processes have exclusive access to the hardware.

5.2. Wake Locks

Power management in Android is predicated on the notion that the base state of the
smartphone device should be low-power mode. Processes or kernel drivers must explic-
itly request that the device remain active. This is accomplished through wake locks, or
suspend blockers [Wysocki 2011a, 2011b], and a corresponding kernel subsystem that
uses a timer to opportunistically suspend the device even if processes are still running.

Wake locks are a special kind of OS kernel reference counter with two states: active
and inactive. When a wake lock is “locked”, its state is changed to active; when “un-
locked,” its state is changed to inactive. A wake lock can be locked multiple times, but
only requires a single unlock to put it into the inactive state. The Android system will
not enter suspend, or low power mode, until all wake locks are inactive. When all locks
are inactive, the suspend timer is started. If the timer expires without an intervening
lock then the device is powered down.

Wake locks in a background VP interfering with the foreground VP’s ability to sus-
pend the device coupled with their distributed use and initialization make wake locks
a challenging virtualization problem. Wake locks can be created statically at compile
time or dynamically by kernel drivers or user space. They can also be locked and
unlocked from user context, kernel context (work queues), and interrupt context (IRQ
handlers) independently, making determination of the VP to which a wake lock belongs
a nontrivial task.

Cells leverages the kernel-level device namespace and foreground-background us-
age model to maintain both kernel and user space wake lock interfaces while adhering
to the two virtualization principles specified above. The solution is predicated on three
assumptions. First, all lock and unlock coordination in the trusted root namespace
was correct and appropriate before virtualization. Second, we trust the kernel and its
drivers, that is, when a lock or unlock is called from interrupt context, we perform
the operation unconditionally. Third, the foreground VP maintains full control of the
hardware.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:15

Under these assumptions, Cells virtualizes Android wake locks using device names-
paces to tag lock and unlock operations. Multiple device namespaces can indepen-
dently lock and unlock the same wake lock, and power management operations are
only initiated based on the state of the set of locks associated with the foreground VP.
The solution comprises the following set of rules.

(1) When a wake lock is locked, a namespace “token” is associated with the lock in-
dicating the context in which the lock was taken. A wake lock token may contain
references to multiple namespaces if the lock was taken from those namespaces.

(2) When a wake lock is unlocked from user context, remove the associated namespace
token.

(3) When a wake lock is unlocked from interrupt context or the root namespace, re-
move all lock tokens. This follows from our explicit trust of the kernel and its
drivers.

(4) After a user context lock or unlock, adjust any suspend timeout value based only
on locks acquired in the foreground VP’s device namespace.

(5) After a root namespace lock or unlock, adjust the suspend timeout based on the
foreground VP’s device namespace.

(6) When the foreground VP changes, reset the suspend timeout based on locks ac-
quired in the device namespace of the new foreground VP. This requires per-
namespace bookkeeping of suspend timeout values.

One additional mechanism was necessary to implement the Cells wake lock virtu-
alization. The set of rules given above implicitly assumes that, aside from interrupt
context, the lock and unlock functions are aware of the device namespace in which the
operation is being performed. While this is true for operations started from user con-
text, it is not the case for operations performed from kernel work queues. To address
this issue, we introduced a mechanism that executes a kernel work queue in a specific
device namespace.

6. TELEPHONY

Cells provides each VP with separate telephony functionality enabling per-VP call logs,
and independent phone numbers. We first describe how Cells virtualizes the radio
stack to provide telephony isolation among VPs, then we discuss how multiple phone
numbers can be provided on a single physical phone using the standard carrier voice
network and a single SIM.

6.1. RIL Proxy

The Android telephony subsystem is designed to be easily ported by phone vendors to
different hardware devices. The Android phone application uses a set of Java libraries
and services that handle the telephony state and settings such as displaying current
radio strength in the status bar, and selection of different roaming options. The phone
application, the libraries, and the services all communicate via Binder IPC with the
Radio Interface Layer (RIL) Daemon (RilD). RilD dynamically links with a library pro-
vided by the phone hardware vendor which in turn communicates with kernel drivers
and the radio baseband system. The left side of Figure 2 shows the standard Android
telephony system.

The entire radio baseband system is proprietary and closed source, starting from
the user-level RIL vendor library down to the physically separate hardware baseband
processor. Details of the vendor library implementation and its communication with
the baseband are well-guarded secrets. Each hardware phone vendor provides its own
proprietary radio stack. Since the stack is a complete black box, it would be difficult

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:16 C. Dall et al.

Android Java Android Java

Java Phone/
RIL services

Java Phone/
RIL services

Libraries

VP Libraries Root namespace

Vendor RIL Cells RIL Vendor RIL

Kernel Kernel

Drivers / PPP Drivers / PPP
[\
Baseband Baseband
GSM/CDMA GSM/CDMA
Android Cells
Radio Interface Layer Radio Interface Layer

Fig. 2. Cells radio interface layer.

if not impossible to intercept, replicate, or virtualize any aspect of this system in the
kernel without direct hardware vendor support. Furthermore, the vendor library is
designed to be used by only a single RilD and the radio stack as a whole is not designed
to be multiplexed.

As a result of these constraints, Cells virtualizes telephony using our user-level de-
vice namespace proxy in a solution designed to work transparently with the black box
radio stack. Each VP has the standard Android telephony Java libraries and services
and its own stock RilD, but rather than having RilD communicate directly with the
hardware vendor provided RIL library, Cells provides its own proxy RIL library in
each VP. The proxy RIL library is loaded by RilD in each VP and connects to CellD
running in the root namespace. CellD then communicates with the hardware vendor
library to use the proprietary radio stack. Since there can be only one radio stack,
CellD loads the vendor RIL library on system startup and multiplexes access to it. We
refer to the proxy RIL library together with CellD as the RIL proxy. The right side
of Figure 2 shows the Cells Android telephony system, which has three key features.
First, no hardware vendor support is required since it treats the radio stack as a black
box. Second, it works with a stock Android environment since Android does not pro-
vide its own RIL library but instead relies on a hardware-specific, vendor-provided
RIL implementation. Third, it operates at a well-defined interface, making it possible
to understand exactly how communication is done between RilD and the RIL library
it uses.

Cells leverages its foreground-background model to enable the necessary multiplex-
ing of the radio stack. Users can only make calls from the foreground VP, since only
its user interface is displayed. Therefore CellD allows only the foreground VP to make
calls. All other forms of multiplexing are done in response to incoming requests from

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:17

Table Il. Filtered RIL Commands

Call Class Category
Dial Request Solicited

Set Screen State Solicited Foreground
Set Radio State Solicited

SIM I/0 Solicited Initialization
Signal Strength Unsolicited | Radio Info
Call State Changed | Unsolicited

Call Ring Unsolicited | Phone Calls
Get Current Calls Solicited

the radio stack through CellD. CellD uses the vendor RIL library in the same manner
as Android’s RilD, and can therefore take full advantage of the well-defined RIL API.
CellD uses existing RIL commands to leverage existing network features to provide
call multiplexing among VPs. For example, standard call multiplexing in Android al-
lows for an active call to be placed on hold while answering or making another call.
Since CellD intercepts incoming call notifications and outgoing call requests, it can
forward an incoming call notification to a background VP even while there is an active
call in the foreground VP. CellD can then place the foreground call on hold by issuing
the same set of RIL commands that the Android phone application would normally is-
sue to place a call on hold, switch the receiving background VP to the foreground, and
let the new foreground VP answer the call. In the same way, if a user switches a fore-
ground VP to the background, and the system is configured to place active foreground
calls on hold when this happens, CellD can allow the new foreground VP to place a
new call while the existing call is on hold in the background.

The RIL proxy needs to support the two classes of function calls defined by the RIL,
solicited calls, which pass from RilD to the RIL library, and unsolicited calls, which
pass from the RIL library to RilD. The interface is relatively simple, as there are only
four defined solicited function calls and two defined unsolicited function calls, though
there are a number of possible arguments. Both the solicited requests and the re-
sponses carry structured data in their arguments. The structured data can contain
pointers to nested data structures and arrays of pointers. The main complexity in im-
plementing the RIL proxy is dealing with the implementation assumption in Android
that the RIL vendor library is normally loaded in the RilD process so that pointers
can be passed between the RIL library and RilD. In Cells, the RIL vendor library is
loaded in the CellD process instead of the RilD process and the RIL proxy passes the
arguments over a standard Unix Domain socket so all data must be thoroughly packed
and unpacked on either side.

The basic functionality of the RIL proxy is to pass requests sent from within a
VP unmodified to the vendor RIL library and to forward unsolicited calls from the
vendor RIL library to RilD inside a VP. CellD filters requests as needed to disable
telephony functionality for VPs that are configured not to have telephony access. How-
ever, even in the absence of such VP configurations, some solicited requests must be
filtered from background VPs and some calls require special handling to properly sup-
port our foreground-background model and provide working isolated telephony. The
commands that require filtering or special handling are shown in Table II and can
be categorized as those involving the foreground VP, initialization, radio info, and
phone calls.

Foreground commands are allowed only from the foreground VP. The Dial
Request command represents outgoing calls, Set Screen State is used to suppress

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:18 C. Dall et al.

certain notifications like signal strength, and Set Radio State is used to turn the
radio on or off. Set Screen State is filtered from background VPs by only changing
a per-VP variable in CellD that suppresses notifications to the issuing background
VP accordingly. Dial Request and Set Radio State are filtered from all background
VPs by returning an error code to the calling background VP. This ensures that
background VPs do not interfere with the foreground VP’s exclusive ability to place
calls.

Initialization commands are run once on behalf of the first foreground VP to call
them. The SIM I/O command is used to communicate directly with the SIM card,
and is called during radio initialization (when turning on the device or turning off air-
plane mode), and when querying SIM information such as the IMSI. The first time a
VP performs a SIM I/O command, CellD records an ordered log of commands, asso-
ciated data, and corresponding responses. This log is used to replay responses from
the vendor RIL library when other VPs attempt SIM I/O commands. When the radio
is turned off, the log is cleared, and the first foreground VP to turn on the radio will
be allowed to do so, causing CellD to start recording a new log. CellD also records
the radio state between each SIM I/O command to properly replay any state tran-
sitions. The record/replay implementation properly virtualizes SIM I/O commands
by initializing the proprietary baseband stack only exactly when needed and by sim-
ulating expected behavior to background VPs that perform SIM I/0 initialization
commands.

Radio Info commands are innocuous and are broadcast to all VPs. Signal Strength is
an unsolicited notification about the current signal strength generated by the vendor
library. CellD re-broadcasts this information to all VPs with one exception. During
initialization, a VP cannot be notified of the signal strength since that would indicate
an already initialized radio and generate errors in the VP running the initialization
commands.

The Phone Call commands, Call State Changed, Call Ring, and Get Current Calls,
notify a VP of incoming calls and call state changes. When an incoming call occurs, a
Call State Changed notification is sent, followed by a number of Call Ring notifications
for as long as the call is pending. CellD inspects each notification and determines the
VP to which it should forward the notification. However, this is somewhat complicated
since the notifications are independent and neither notification contains a phone num-
ber. When there is an incoming call on an unmodified phone, RilD also receives the
Call State Changed and Call Ring notifications, but issues a Get Current Calls com-
mand to retrieve the caller ID and display caller information to the user. CellD mirrors
this behavior by queueing the incoming call notifications and by issuing the Get Cur-
rent Calls to receive a list of all incoming and active calls. Using tagging information
encoded in the caller ID as discussed in Section 6.2, CellD determines the target VP
and passes the queued notifications into the appropriate VP. When a VP subsequently
issues a Get Current Calls request, CellD simply forwards the request (which can be
issued multiple times) to the vendor library, but intercepts the data returned from
the vendor library and only returns data from calls directed to, or initiated from the
requesting VP.

CellD’s architecture supports a highly configurable implementation, and there are
many valid security configuration scenarios. For example, if the user switches the
foreground VP during a call, CellD can either drop the call and switch to the new VP,
keep the call alive and switch to a new VP (handling the active call in a background
VP), or, deny switching to a new VP until the call is ended by the user. Under all
configurations, Cells provides strict isolation between every VP by not allowing any
information pertaining to a specific VP to be revealed to another VP including incoming
and outgoing call information and phone call voice data.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:19

6.2. Multiple Phone Numbers

While some smartphones support multiple SIM cards, which makes supporting mul-
tiple phone numbers straightforward, most phones do not provide this feature. Since
mobile network operators do not generally offer multiple phone numbers per SIM card
or CDMA phone, we offer an alternative system to provide a distinct phone number
for each VP on existing unmodified single SIM card phones, which dominate the mar-
ket. Our approach is based on pairing Cells with a VoIP service that enables telephony
with the standard cellular voice network and standard Android applications, but with
separate phone numbers.

The Cells VoIP service consists of a VoIP server that registers a pool of subscriber
numbers and pairs each of them with the carrier provided number associated with
a user’s SIM. The VoIP server receives incoming calls, forwards them to a user’s ac-
tual phone number using the standard cellular voice network, and passes the incom-
ing caller ID to the user’s phone appending a digit denoting the VP to which the call
should be delivered. When CellD receives the incoming call list, it checks the last digit
of the caller ID and chooses a VP based on that digit. Cells allows users to configure
which VP should handle which digit through the VoIP service interface. CellD strips
the appended digit before forwarding call information to the receiving VP resulting
in correctly displayed caller IDs within the VP. If the VP is not available, the VoIP
service will direct the incoming call to a server-provided voice mail. We currently use
a single digit scheme supporting a maximum of ten selectable VPs, which should be
more than sufficient for any user. While it is certainly possible to spoof caller ID, in
the worst case, this would simply appear to be a case of dialing the wrong phone num-
ber. Our VoIP service is currently implemented using an Asterisk [2011] server as it
provides unique functionality not available through other commercial voice services.
For example, although Google Voice can forward multiple phone numbers to the same
land line, it does not provide this capability for mobile phone numbers, and does not
provide arbitrary control over outgoing caller ID [Google 2011c].

The caller ID of outgoing calls should also be replaced with the phone number of the
VP that actually makes the outgoing call instead of the mobile phone’s actual mobile
phone number. Unfortunately, the GSM standard does not have any facility to change
the caller ID, only to either enable or disable showing the caller ID. Therefore, if the
VP is configured to display outgoing caller IDs, Cells ensures that they are correctly
sent by routing those calls through the VoIP server. CellD intercepts the Dial Request,
dials the VoIP service subscriber number associated with the dialing VP, and passes
the actual number to be dialed via DTMF tones. The VoIP server interprets the tones,
dials the requested number, and connects the call.

Note that Cells only leverages a VoIP service for multiple phone number support.
It does not use VoIP from the smartphone itself. All incoming and outgoing calls from
the smartphone are regular calls placed on the cellular network. As a result, Cells
provides the same kind of call quality and reliability of regular cell phones, especially
in geographic locations in which data network coverage can be poor.

7. NETWORKING

Mobile devices are commonly equipped with an IEEE 802.11 wireless LAN (WLAN)
adapter and cellular data connectivity through either a GSM or CDMA network.
Each VP that has network access must be able to use either WLAN or cellular data
depending on what is available to the user at any given location. At the same time,
each VP must be completely isolated from other VPs. Cells integrates both kernel and
user-level virtualization to provide necessary isolation and functionality, including

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:20 C. Dall et al.

core network resource virtualization and a unique wireless configuration management
virtualization.

Cells leverages previous kernel-level work [Su 2004; Sugerman et al. 2001] that
virtualizes core network resources such as IP addresses, network adapters, routing ta-
bles, and port numbers. This functionality has been largely built in to recent versions of
the Linux kernel in the form of network namespaces [Bhattiprolu et al. 2008]. Virtual
identifiers are provided in VPs for all network resources, which are then translated
into physical identifiers. Real network devices representing the WLAN or cellular data
connection are not visible within a VP. Instead, a virtual Ethernet pair is setup from
the root namespace where one end is present inside a VP and the other end is in the
root namespace. The kernel is then configured to perform Network Address Transla-
tion (NAT) between the active public interface (either WLAN or cellular data) and the
VP-end of a virtual Ethernet pair. Each VP is then free to bind to any socket address
and port without conflicting with other VPs. Cells uses NAT as opposed to bridged
networking since bridging is not supported on cellular data connections and is also not
guaranteed to work on WLAN connections. Note that since each VP has its own virtual-
ized network resources, network security mechanisms are isolated among VPs. For ex-
ample, VPN access to a corporate network from one VP cannot be used by another VP.

However, WLAN and cellular data connections use device-specific, user-level
configuration which requires support outside the scope of existing core network
virtualization. There exists little if any support for virtualizing WLAN or cellular data
configuration. Current best practice is embodied in desktop virtualization products
such as VMware Workstation [VMware, Inc. 2011] that create a virtual wired Ethernet
adapter inside a virtual machine but leave the configuration on the host system. This
model does not work on a mobile device where no such host system is available and
a VP is the primary system used by the user. VPs rely heavily on network status
notifications reflecting a network configuration that can frequently change, making
it essential for wireless configuration and status notifications to be virtualized and
made available to each VP. A user-level library called wpa_supplicant with support
for a large number of devices is typically used to issue various ioctls and netlink
socket operations that are unique to each device. Unlike virtualizing core network
resources that are general and well defined, virtualizing wireless configuration in
the kernel would involve emulating the device-specific understanding of configuration
management that is error-prone, complicated, and difficult to maintain.

To address this problem, Cells leverages the user-level device namespace proxy and
the foreground-background model to decouple wireless configuration from the actual
network interfaces. A configuration proxy is introduced to replace the user-level WLAN
configuration library and RIL libraries inside each VP. The proxy communicates with
CellD running in the root namespace, which communicates with the original user-level
library for configuring WLAN or cellular data connections. In the default case where
all VPs are allowed network access, CellD forwards all configuration requests from
the foreground VP proxy to the user-level library, and ignores configuration requests
from background VP proxies that would adversely affect the foreground VP’s network
access. This approach is minimally intrusive since user space phone environments,
such as Android, are already designed to run on multiple hardware platforms and
therefore cleanly interface with user space configuration libraries.

To virtualize Wi-Fi configuration management, Cells replaces wpa_supplicant in-
side each VP with a thin Wi-Fi proxy. The well-defined socket interface used by
wpa_supplicant is simple to virtualize. The Wi-Fi proxy communicates with CellD
running in the root namespace, which in turn starts and communicates with
wpa_supplicant as needed on behalf of individual VPs. The protocol used by the Wi-Fi
proxy and CellD is quite simple, as the standard interface to wpa_supplicant consists of

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:21

only eight function calls each with text-based arguments. The protocol sends the func-
tion number, a length of the following message, and the message data itself. Replies
are similar, but also contain an integer return value in addition to data. CellD ensures
that background VPs cannot interfere with the operation of the foreground VP. For
instance, if the foreground VP is connected to a Wi-Fi network and a background VP
requests to disable the Wi-Fi access, the request is ignored. At the same time, inquiries
sent from background VPs that do not change state or divulge sensitive information,
such as requesting the current signal strength, are processed since applications such
as email clients inside background VPs may use this information to, for example, de-
cide to check for new email.

For virtualizing cellular data connection management, Cells replaces the RIL ven-
dor library as described in Section 6, which is also responsible for establishing cellular
data connections. As with Wi-Fi, CellD ensures that background VPs cannot interfere
with the operation of the foreground VP. For instance, a background VP cannot change
the data roaming options causing the foreground VP to either lose data connectivity or
inadvertently use the data connection. Cellular data is configured independently from
the Wi-Fi connection and VPs can also be configured to completely disallow data con-
nections. Innocuous inquiries from background VPs with network access, such as the
status of the data connection (Edge, 3G, HSPDA, etc.) or signal strength, are processed
and reported back to the VPs.

8. EXPERIMENTAL RESULTS

We have implemented a Cells prototype using Android and demonstrated its complete
functionality across different Android devices, including the Google Nexus 1 [Google
2011a] and Nexus S [Google 2011b] phones. The prototype has been tested to work
with multiple versions of Android, including the most recent open-source version, ver-
sion 4.0.3. However, all of our experimental results are based on Android 2.3.3, which
was the latest open-source version available at the time of our experiments. In Ul test-
ing while running multiple VPs on a phone, there is no user noticeable performance
difference between running in a VP and running natively on the phone. For exam-
ple, while running 4 VPs on a Nexus 1 device using Android 2.3.3, we simultaneously
played the popular game Angry Birds [Rovio Mobile Ltd. 2011] in one VP, raced around
a dirt track in the Reckless Racing [polarbit 2011] game on a second VP, crunched some
numbers in a spreadsheet using the Office Suite Pro [Mobile Systems 2011] application
in a third VP, and listened to some music using the Android music player in the fourth
VP. Using Cells we were able to deliver native 3D acceleration to both game instances
while seamlessly switching between and interacting with all four running VPs.

8.1. Methodology

We further quantitatively measured the performance of our unoptimized prototype
running a wide range of applications in multiple VPs. Our measurements were ob-
tained using a Nexus 1 (Qualcomm 1 GHz QSD8250, Adreno 200 GPU, 512 MB RAM)
and Nexus S (Samsung Hummingbird 1 GHz Cortex A8, PowerVR GPU, 512 MB RAM)
phones. The Nexus 1 uses an SD card for storage for some of the applications; we used
a Patriot Memory class 10 16 GB SD card. Due to space constraints on the Nexus 1
flash device, all Android system files for all Cells configurations were stored on, and
run from, the SD card.

The Cells implementation used for our measurements was based on the Android
Open Source Project (AOSP) version 2.3.3, the most recent version available at the
time our measurements were taken. Aufs version 2.1 was used for file system union-
ing [Okajima 2011]. A single read-only branch of a union file system was used as the

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:22 C. Dall et al.

/system and /data partitions of each VP. This saves megabytes of file system cache
while maintaining isolation between VPs through separate writable branches. When
one VP modified a file in the read-only branch, the modification is stored in its own
private write branch of the file system. The implementation enables the Linux KSM
driver for a period of time when a VP is booted. To maximize the benefit of KSM, CellD
uses a custom system call which adds all memory pages from all processes to the set
of pages KSM attempts to merge. While this potentially maximizes shared pages, the
processing overhead required to hash and check all memory pages from all processes
quickly outweighs the benefit. Therefore, CellD monitors the KSM statistics through
the procfs interface and disables shared page merging after the merge rate drops below
a predetermined threshold.

We present measurements along three dimensions of performance: runtime over-
head, power consumption, and memory usage. To measure runtime overhead, we
compared the performance of various applications running with Cells versus running
the applications on the latest manufacturer stock image available for the respective
mobile devices (Android 2.3.3 build GRI40). We measured the performance of Cells
when running 1 VP (1-VP), 2 VPs (2-VP), 3 VPs (3-VP), 4 VPs (4-VP), and 5 VPs (5-VP),
each with a fully booted Android environment running all applications and system
services available in such an environment. Since AOSP v2.3.3 was used as the system
origin in our experiments, we also measured the performance of a baseline system
(Baseline) created by compiling the AOSP v2.3.3 source and installing it unmodified.

We measured runtime overhead in two scenarios, one with a benchmark application
designed to stress some aspect of the system, and the other with the same application
running, but simultaneously with an additional background workload. The benchmark
application was always run in the foreground VP and if a background workload was
used, it was run in a single background VP when multiple VPs were used. For the
benchmark application, we ran one of six Android applications designed to measure
different aspects of performance: CPU using Linpack for Android v1.1.7; file I/O us-
ing Quadrant Advanced Edition v1.1.1; 3D graphics using Neocore by Qualcomm; Web
browsing using the popular SunSpider v0.9.1 JavaScript benchmark; and networking
using the wget module in a cross-compiled version of BusyBox v1.8.1 to download a
single 400 MB file from a dedicated Samsung nb30 laptop (1.66 GHz Intel Atom N450,
Intel GMA 3150 GPU, 1 GB RAM). The laptop was running Windows 7, providing a
WPA wireless access point via its Atheros AR9285 chipset and built-in Windows 7 Sof-
tAP [Microsoft 2011] functionality, and serving up the file through the HFS [2011] file
server v2.2f. To minimize network variability, a location with minimal external Wi-Fi
network interference was chosen. Each experiment was performed from this same lo-
cation with the phone connected to the same laptop access point. For the background
workload, we played a music file from local storage in a loop using the standard An-
droid music player. All results were normalized to 1.0 against the performance of the
manufacturer’s stock configuration without the background workload.

To measure power consumption, we compared the power consumption of the latest
manufacturer stock image available for the respective mobile devices against that of
Baseline and Cells in 1-VP, 2-VP, 3-VP, 4-VP, and 5-VP configurations. We measured
two different power scenarios. In the first scenario, the device configuration under test
was fully booted, all VPs started up and KSM had stopped merging pages, then the
Android music player was started. In multiple VP configurations, the music player
ran in the foreground VP, preventing the device from entering a low power state. The
music player repeated the same song continuously for four hours. During this time
we sampled the remaining battery capacity every 10 seconds. In the second power
scenario, the device configuration under test was fully booted, and then the device was
left idle for 12 hours. During the idle period, the device would normally enter a low

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:23

1.40

B Baseline B1-VP B2-VVP O3-VP 04-VP O05-VP

1.20

1.00
0.80
0.60
0.40
0.20

S T T T T T T TN T Y T T A T T T N T

0.00
Linpack NeoCore Quadrant Sun Network

I/O Spider

Fig. 3. Normalized Nexus 1 results (lower is better).

power state, preventing intermediate measurements. However, occasionally the device
would wake up to service timers and Android system alarms, and during this time we
would take a measurement of the remaining battery capacity. At the end of 12 hours,
we took additional measurements of capacity. To measure power consumption due
to Cells and avoid having those measurements completely eclipsed by Wi-Fi, cellular,
and display power consumption, we disabled Wi-Fi and cellular communication, and
turned off the display backlight for these experiments.

To measure memory usage, we recorded the amount of memory used for the Baseline
and Cells in 1-VP, 2-VP, 3-VP, 4-VP, and 5-VP configurations. We measured two dif-
ferent memory scenarios. First, we ran a full Android environment without launching
any additional applications other than those that are launched by default on system
bootup (No Apps). Second, we ran the first scenario plus the Android Web browser, the
Android email client, and the Android calendar application (Apps). In both scenarios,
an instance of every application was running in all background VPs as well as the
foreground VP.

8.2. Measurements

Figures 3 to 8 show measurement results. These are the first measurements we are
aware of for running multiple Android instances on a single phone. In all experiments,
Baseline and stock measurements were within 1% of each other, so only Baseline re-
sults are shown.

Figures 3 and 4 show the runtime overhead on the Nexus 1 and Nexus S, respec-
tively, for each of the benchmark applications with no additional background workload.
Cells runtime overhead was small in all cases, even with up to 5 VPs running at the
same time. Cells incurs less than than 1% overhead in all cases on the Nexus 1 ex-
cept for Network and Quadrant I/O, and less than 4% overhead in all cases on the
Nexus S. The Neocore measurements show that Cells is the first system that can de-
liver fully-accelerated graphics performance in virtual mobile devices. Quadrant I/O

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:24 C. Dall et al.

140 B Baseline B1-VP B2-VP O3-VP 04-VP U5-VP
1.20
1.00
0.80
0.60
0.40

0.20

0.00

Linpack | NeoCore IQuadrantl Sun Network
l/O Spider

Fig. 4. Normalized Nexus S results (lower is better).

on the Nexus 1 has less than 7% overhead in all cases, though the 4-VP and 5-VP mea-
surements have more overhead than the configurations with fewer VPs. To isolate the
impact of VPs on I/O, we configured the Quadrant I/O benchmark to use the internal
flash storage for its measurements on the Nexus 1 instead of using the SD card, as the
internal flash storage is used for the Baseline system. Experiments using the SD card
instead of internal flash for the Quadrant I/O benchmark show that this configuration
results in roughly 20% overhead compared to using internal flash.

The Network overhead measurements show the highest overhead on the Nexus 1
and the least overhead on the Nexus S. The measurements shown are averaged across
ten experiments per configuration. The differences here are not reflective of any signif-
icant differences in performance as much as the fact that the results of this benchmark
were highly variable; the variance in the results for any one configuration was much
higher than any differences across configurations. While testing in a more tightly con-
trolled environment would provide more stable numbers, any overhead introduced by
Cells was consistently below Wi-Fi variability levels observed on the manufacturer’s
stock system and should not be noticeable by a user.

Figures 5 and 6 show the runtime overhead on the Nexus 1 and Nexus S, respec-
tively, for each of the benchmark applications while running the additional background
music player workload. All results are normalized to the performance of the stock
system running the first scenario without a background workload to show the over-
head introduced by the background workload. As expected, there is some additional
overhead relative to a stock system not running a background workload, though the
amount of overhead varies across applications. Relative to a stock system, Neocore
has the least overhead, and has almost the same overhead as without the background
workload because it primarily uses the GPU for 3D rendering which is not used by
the music player. Linpack and SunSpider incur some additional overhead compared to
running without the background workload, reflecting the additional CPU overhead of
running the music player at the same time. Network runtime overhead while running

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:25

1.40
| ®Baseline ®1-VP B2-VP O03-VP 04-VP O05-VP ~

1.20 — M-

1.00
0.80
0.60
0.40
0.20

I T T T I T S T N T T T T Y

0.00 - . . .
Linpack NeoCore Quadrant Sun Network

l/O Spider

Fig. 5. Normalized Nexus 1 + music results (lower is better).

an additional background workload showed the same level of variability in measure-
ment results as the benchmarks run without a background workload. Cells network
performance overhead is modest, as the variance in the results for any one configu-
ration still exceeded the difference across configurations. Quadrant I/O overhead was
the highest among the benchmark applications.

Comparing to the Baseline configuration with an additional background workload,
Cells overhead remains small in all cases. It incurs less than 1% overhead in all cases
on the Nexus 1 except for Network and Quadrant I/O, and less than 4% overhead in
all cases on the Nexus S except for Quadrant I/O, although the majority of benchmark
results on the Nexus S show nearly zero overhead. Quadrant I/O on the Nexus 1, while
running an additional background workload, incurs a maximum overhead of 7% rela-
tive to Baseline performance. Quadrant I/O on the Nexus S has less than 2% overhead
for the 1-VP configuration when compared to the Baseline configuration. However,
configurations with more than 1 VP show an overhead of 10% relative to the Baseline
due to higher I/0O performance in the Nexus S baseline compared to the Nexus 1. The
higher absolute performance of the Nexus S accentuates the virtualization overhead
of running multiple VPs.

Figure 7 shows power consumption on the Nexus 1 and Nexus S, both while playing
music with the standard Android music player for 4 hours continuously, and while
letting the phone sit idle for 12 hours in a low power state. In both scenarios, the
background VPs were the same as the foreground VP except that in the second scenario
the music player was not running in the background VPs. Note that the graph presents
normalized results, not absolute percentage difference in battery capacity usage, so
lower numbers are better.

The power consumption attributable to Cells during the 4 hours of playing music on
the Nexus 1 increased while running more VPs, which involved scheduling and run-
ning more processes and threads on the system and resulted in a higher power sup-
ply load variation. The nonlinearity in how this variation affects power consumption

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:26 C. Dall et al.

1.40
{ @ Baseline ®1-VP B2-VP O03-VP 04-VP 05-VP

1.20 1 —

1.00 1 il T il 1 =[H
0.80] il il il il il
0.60] il il il il il
0.40 ; il il il il iils
0.20 ; il il il il il
0.00 -

Linpack INeoCore IQuadrantl Sun | Network
l/O Spider

Fig. 6. Normalized Nexus S + music results (lower is better).

1.40
B Baseline B1-VP 82-VP O03-VP 04-VP U5-VP

1.20

LIL

Nexus 1 After | Nexus S Afterl Nexus 1 After | Nexus S After
4hrs Music 4hrs Music 12hrs Idle 12hrs Idle

Fig. 7. Normalized battery capacity (lower is better).

1.00
0.80
0.60
0.40

0.20

0.00

resulted in the 4-6% overhead in battery usage for 1-VP through 3-VP, and the 10-20%
overhead for 4-VP and 5-VP. In contrast, the Nexus S showed no measurable increase
in power consumption during the 4 hours of playing music, though the the noisy mea-
surements had some slight variation. Because the Nexus S is a newer device, the
better power management may be reflective of what could be expected when running
Cells on newer hardware.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:27
512 1
| mBaseline M1-VP B2-VP 0 3-VP 04-VP O5-\VP
448 -
384 -
320] i
256 i il il -
192 i 1 H i s
128 - i i i -
64 - n i m | H
0 . . .

Nexus 1 Nexus 1 Nexus S Nexus S
No Apps Apps No Apps Apps

Fig. 8. Memory usage in MB.

Nexus 1 power consumption after 12 hours of sitting idle was within 2% of Baseline.
Similarly, Nexus S measurements showed no measurable increase in power consump-
tion due to Cells after the 12 hour idle period. When the device sat idle, the Android
wake lock system would aggressively put the device in a low power mode where the
CPU was completely powered down. The idle power consumption results hold even
when background VPs are running applications which would normally hold wake locks
to prevent the device from sleeping such as a game like Angry Birds or the Android
music player. This shows that the Cells’ wake lock virtualization makes efficient use
of battery resources.

Figure 8 shows memory usage on the Nexus 1 and Nexus S. These results show that
by leveraging the KSM driver and file system unioning, Cells requires incrementally
less memory to start each additional VP compared to running the first VP. Further-
more, the 1-VP configuration uses less memory than the Baseline configuration, also
due to the use of the KSM driver. Cells device memory use increases linearly with the
number of VPs running, but at a rate much less than the amount of memory required
for the Baseline.

The Nexus 1 memory usage is reported for both memory scenarios, No Apps and
Apps, across all six configurations. The No Apps measurements were taken after boot-
ing each VP and waiting until CellD disabled the KSM driver. The Apps measurements
were taken after starting an instance of the Android Web browser, email client, and
calendar program in each running VP. Leveraging the Linux KSM driver, Cells uses
approximately 20% less memory for 1-VP than Baseline in the No Apps scenario. The
No Apps measurements show that the memory cost for Cells to start each additional
VP is approximately 55 MB, which is roughly 40% of the memory used by the Base-
line Android system and roughly 50% of the memory used to start the first VP. The
reduced memory usage of additional VPs is due to Cells’ use of file system unioning
to share common code and data as well as KSM, providing improved scalability on
memory-constrained phones.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:28 C. Dall et al.

As expected, the No Apps scenario uses less memory than the Apps scenario. Start-
ing all three applications in the 1-VP Apps scenario consumes 24 MB. This memory
scales linearly with the number of VPs because we disable the KSM driver before
starting the applications. It may be possible to reduce the memory used when running
the same application in all VPs by periodically enabling the KSM driver, however ap-
plication heap usage would limit the benefit. For example, while Cells uses 20% less
memory for 1-VP than Baseline in the No Apps scenario, this savings decreases in the
Apps scenario because of application heap memory usage.

The Nexus S memory usage is reported under the same conditions described above
for the Nexus 1. The memory cost of starting a VP on the Nexus S is roughly 70 MB.
This is higher than the Nexus 1 due to increased heap usage by Android base applica-
tions and system support libraries. The memory cost of starting all three apps in the
1-VP Apps scenario is approximately the same as the Nexus 1, and also scales linearly
with the number of running VPs.

However, the total memory usage for the Nexus S shown in Figure 8 does not con-
tinue to increase with the number of running VPs. This is due to the more limited
available RAM on the Nexus S and the Android low memory killer. The Nexus S con-
tains several hardware acceleration components which require dedicated regions of
memory. These regions can be multiplexed across VPs, but reduce the total available
system memory for general use by applications. As a result, although the Nexus 1 and
Nexus S have the same amount of RAM, the RAM available for general use on the
Nexus S is about 350 MB versus 400 MB for the Nexus 1. Thus, after starting the 4th
VP in the No Apps scenario, and after starting the 3rd VP in the Apps scenario, the
Android low memory Kkiller begins to kill background processes to free system memory
for new applications. While this allowed us to start and interact with 5 VPs on the
Nexus S, it also slightly increased application startup time.

9. RELATED WORK

Virtualization on embedded and mobile devices is a relatively new area. Bare-metal
hypervisors such as OKL4 Microvisor [Open Kernel Labs 2011] and Red Bend’s VLX
[Red Bend Software 2011] offer the potential benefit of a smaller trusted computing
base, but the disadvantage of having to provide device support and emulation, an
onerous requirement for smartphones which provide increasingly diverse hardware
devices. For example, we are not aware of any OKL4 implementations that run An-
droid on any phones other than the dated HTC G1. A hosted virtualization solution
such as VMware MVP [Barr et al. 2010] can leverage Android device support to more
easily run on recent hardware, but its trusted computing base is larger as it includes
both the Android user space environment and host Linux OS. Xen for ARM [Hwang
et al. 2008] and KVM/ARM [Dall and Nieh 2010] are open-source virtualization solu-
tions for ARM, but are both incomplete with respect to device support. All of these
approaches require paravirtualization and require an entire OS instance in each VM
adding to both memory and CPU overhead. This can significantly limit scalability and
performance on resource constrained phones. For example, VMware MVP is targeted
to run just one VM to encapsulate an Android virtual work phone on an Android host
personal phone.

Cells’ OS virtualization approach provides several advantages over existing hard-
ware virtualization approaches on smartphones. First, it is more lightweight and in-
troduces less overhead. Second, only a single OS instance is run to support multiple
VPs as opposed to needing to run several OS instances on the same hardware, one per
VM plus an additional host instance for hosted virtualization. Attempts have been
made to run a heavily modified Android in a VM without the OS instance [Hills], but
they lack support for most applications and are problematic to maintain. Third, OS

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:29

virtualization is supported in existing commodity OSes such as Linux, enabling Cells
to leverage existing investments in commodity software as opposed to building and
maintaining a separate, complex hypervisor platform. Fourth, by running the same
commodity OS already shipped with the hardware, we can leverage already available
device support instead of needing to rewrite our own with a bare metal hypervisor.

Cells has two potential disadvantages versus hardware virtualization. First, the
Trusted Computing Base (TCB) necessary for ensuring security is potentially larger
than a bare metal hypervisor, though no worse than hosted virtualization. We be-
lieve the benefits in ease of deployment from leveraging existing OS infrastructure
are worth this trade-off. Second, applications in VPs are expected to run on the same
0S8, for example VPs cannot run Apple iOS on an Android system. However, running
a different OS using hardware virtualization would first need to overcome licensing
restrictions and device compatibility issues that would prevent popular smartphone
OSes such as iOS from being run on non-Apple hardware and hypervisors from being
run on Apple hardware.

User-level approaches have also been proposed to support separate work and per-
sonal virtual phone environments on the same mobile hardware. This is done by pro-
viding either an Android work phone application [Enterproid 2011] that also supports
other custom work-related functions such as email, or by providing a secure SDK on
which applications can be developed [WorkLight, Inc. 2011]. While such solutions are
easier to deploy, they suffer from the inability to run standard Android applications
and a weaker security model.

Efficient device virtualization is a difficult problem on user-centric systems such as
desktops and phones that must support a plethora of devices. Most approaches require
emulation of hardware devices, imposing high overhead [Xen Project 2011]. Dedicat-
ing a device to a VM can enable low overhead pass-through operation, but then does
not allow the device to be used by other VMs [NVIDIA Corporation 2011]. Bypass
mechanisms for network I/O have been proposed to reduce overhead [Liu et al. 2006],
but require specialized hardware support used in high-speed network interfaces not
present on most user-centric systems, including phones. GPU devices are perhaps
the most difficult to virtualize. For example, VMware MVP simply cannot run graph-
ics applications such as games within a VM with reasonable performance [VMware,
personal communication]. There are two basic GPU virtualization techniques, API
forwarding and back-end virtualization [Dowty and Sugerman 2009]. API forward-
ing adds substantial complexity and overhead to the TCB, and is problematic due to
vendor-specific graphics extensions [Khronos Group 2011]. Back-end virtualization in
a type-1 hypervisor offers the potential for transparency and speed, but unfortunately
most graphics vendors keep details of their hardware a trade-secret precluding any use
of this virtualization method. In contrast, Cells leverages existing GPU graphics con-
text isolation and takes advantage of the usage model of mobile devices to create a new
device namespace abstraction that transparently virtualizes devices while maintain-
ing native or near native device performance across a wide range of devices including
GPU devices.

10. CONCLUSIONS

We have designed, implemented, and evaluated Cells, the first OS virtualization solu-
tion for mobile devices. Mobile devices have a different usage model than traditional
computers. We use this observation to provide new device virtualization mechanisms,
device namespaces and device namespace proxies, that leverage a foreground-back-
ground usage model to isolate and multiplex phone devices with near zero overhead.
Device namespaces provide a kernel-level abstraction that is used to virtualize critical
hardware devices such as the framebuffer and GPU while providing fully accelerated

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

9:30 C. Dall et al.

graphics. Device namespaces are also used to virtualize Android’s complicated power
management framework, resulting in almost no extra power consumption for Cells
compared to stock Android. Cells proxy libraries provide a user-level mechanism to
virtualize closed and proprietary device infrastructure, such as the telephony radio
stack, with only minimal configuration changes to the Android user space environ-
ment. Cells further provides each virtual phone complete use of the standard cellular
phone network with its own phone number and incoming and outgoing caller ID sup-
port through the use of a VoIP cloud service.

We have implemented a Cells prototype that runs the latest open-source version
of Android on the most recent Google phone hardware, including both the Nexus 1
and Nexus S. The system can use virtual mobile devices to run standard unmodified
Android applications downloadable from the Android market. Applications running
inside VPs have full access to all hardware devices, providing the same user experience
as applications running on a native phone. Performance results across a wide-range of
applications running in up to 5 VPs on the same Nexus 1 and Nexus S hardware show
that Cells incurs near zero performance overhead, and human UI testing reveals no
visible performance degradation in any of the benchmark configurations.

ACKNOWLEDGMENTS

Qi Ding and Charles Hastings helped with running benchmarks to obtain many of the measurements in this
paper. Kevin DeGraaf set up our Asterisk VoIP service. Philip Levis provided helpful comments on earlier
drafts of this article.

REFERENCES

ASTERISK. 2011. http://wuw.asterisk.org.

BARR, K., BUNGALE, P., DEASY, S., GYURIS, V., HUNG, P., NEWELL, C., TUCH, H., AND ZOPPIS, B. 2010.
The VMware mobile virtualization platform: Is that a hypervisor in your pocket? ACM SIGOPS Oper.
Syst. Rev. 44, 124-135.

BHATTIPROLU, S., BIEDERMAN, E. W., HALLYN, S., AND LEZCANO, D. 2008. Virtual servers and check-
point/restart in mainstream linux. ACM SIGOPS Oper. Syst. Rev. 42, 104-113.

CNN. 2011. Industry First: Smartphones Pass PCs in Sales. http://tech.fortune.cnn.com/2011/02/07/
idc-smartphone-shipment-numbers-passed-pc-in-q4-2010.
DALL, C. AND NIEH, J. 2010. KVM for ARM. In Proceedings of the Ottawa Linux Symposium.

DoOwTY, M. AND SUGERMAN, J. 2009. GPU virtualization on VMware’s hosted I/O architecture. ACM
SIGOPS Oper. Syst. Rev. 43, 73-82.

ENTERPROID. 2011. Enterproid, Inc. http://www.enterproid. com.

GOOGLE. 2011a. Nexus One - Google phone gallery. http://www.google.com/phone/detail/nexus-one.

GOOGLE. 2011b. Nexus S - Google phone gallery. http://www.google.com/phone/detail/nexus-s.

GOOGLE. 2011c. Google voice. http://www.google.com/googlevoice/about.html.

HF'S. 2011. HFS ~ HTTP file server. http://www.rejetto.com/hfs/.

HiLLs, M. Android on OKL4. http://www.ertos.nicta.com.au/software/androidok14/.

HWANG, J., SUH, S., HEO, S., PARK, C., RYU, J., PARK, S., AND KIM, C. 2008. Xen on ARM: System
virtualization using xen hypervisor for ARM-based secure mobile phones. In Proceedings of the 5th
Consumer Communications and Newtork Conference.

IMAGINATION TECHNOLOGIES LTD. 2011. PowerVR Series 5 SGX Architecture Guide for Developers.

KHRONOS GROUP. 2011. OpenGL extensions — OpenGL.org.
http://www.opengl.org/wiki/OpenGL_Extensions.

KOLYSHKIN, K. 2011. Recent advances in the Linux kernel resource management.
http://www.cse.wustl.edu/~1lu/control-tutorials/im09/slides/virtualization.pdf.

LAADAN, O., BARATTO, R., PHUNG, D., POTTER, S., AND NIEH, J. 2007. DejaView: A personal virtual
computer recorder. In Proceedings of the 21st Symposium on Operating Systems Principles.

Liu, J., HUANG, W., ABALI, B., AND PANDA, D. K. 2006. High performance VMM-bypass I/O in virtual
machines. In Proceedings of the USENIX Annual Technical Conference.

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

Design, Implementation, and Evaluation of Cells 9:31

MICROSOFT. 2011. About the wireless hosted network.
http://msdn.microsoft.com/en-us/library/dd815243(v=vs.85) .aspx.

MOBILE SYSTEMS. 2011. Office Suite Pro (Trial) — Android Market.
https://market.android.com/details?id=com.mobisystems.editor.office_with_reg.

NVIDIA CORPORATION. 2011. NVIDIA SLI MultiOS.
http://www.nvidia.com/object/sli_multi_os.html.

OKAJIMA, J. R. 2011. AUFS. http://aufs.sourceforge.net/aufs2/man.html.
OPEN KERNEL LABS. 2011. OKL4 Microvisor. http://www.ok-1abs.com/products/okl4-microvisor.

OSMAN, S., SUBHRAVETI, D., SU, G., AND NIEH, J. 2002. The design and implementation of zap: A system
for migrating computing environments. In Proceedings of the 5th Symposium on Operating Systems
Design and Implementation.

POLARBIT. 2011. Reckless Racing — Android market.
https://market.android.com/details?id=com.polarbit.RecklessRacing.

RED BEND SOFTWARE. 2011. VLX mobile virtualization. http://www.redbend. com.

RovIiO MOBILE LTD. 2011. Angry birds — Android market.
https://market.android.com/details?id=com.rovio.angrybirds.

SU, G. 2004. MOVE: Mobility with persistent network connections. Ph.D. thesis, Columbia University.

SUGERMAN, J., VENKITACHALAM, G., AND LIM, B. 2001. Virtualizing I/O devices on VMware workstation’s
hosted virtual machine monitor. In Proceedings of the USENIX Annual Technical Conference.

VMWARE, INC. 2011. VMware workstation. http://www.vmware.com/products/workstation/.

WALDSPURGER, C. A. 2002. Memory resource management in VMware ESX server. In Proceedings of the
5th Symposium on Operating Systems Design and Implementation.

WORKLIGHT, INC. 2011. WorkLight mobile platform. http://www.worklight.com.

WRIGHT, C. P., DAVE, J., GUPTA, P., KRISHNAN, H., QUIGLEY, D. P., ZADOK, E., AND ZUBAIR, M. N. 2006.
Versatility and unix semantics in namespace unification. ACM Trans. Storage 2, 74-105.

WYSOCKI, R. J. 2011a. An alternative to suspend blockers. http://lwn.net/Articles/416690/.

WYSOCKI, R. J. 2011b. Technical background of the android suspend blockers controversy.
http://lwn.net/images/pdf/suspend_blockers.pdf.

XEN PROJECT. 2011. Architecture for split drivers within xen.
http://wiki.xensource.com/xenwiki/XenSplitDrivers.

ZDNET. 2011. Stolen apps that root android, steal data and open backdoors available for download from
google market. http://zd.net/gGUh0o.

Received May 2012; accepted June 2012

ACM Transactions on Computer Systems, Vol. 30, No. 3, Article 9, Publication date: August 2012.

