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Abstract

With the continued proliferation of drones, unmanned aerial
vehicles, additional uses for them are growing and the de-
mand for their services is on the rise. We present AnDrone,
a drone-as-a-service solution that makes drones accessible in
the cloud. AnDrone pairs a cloud service with the first drone
virtualization architecture. This enables a physical drone to
run multiple virtual drones simultaneously in an isolated and
secure manner at little additional cost, as computational costs
are cheap compared to the operational and energy costs of
putting a drone in the air. AnDrone virtualizes drones using
anovel Linux container architecture. Android Things virtual
drone containers provide a familiar user and development
environment that can run existing Android apps. A real-time
Linux flight controller container supports existing drone flight
software and provides virtual drones with geofenced flight
control. A device container transparently multiplexes access
from virtual drones to a full range of drone hardware devices,
including cameras and other sensors. Upon flight completion,
virtual drones and their data can be uploaded to the cloud for
offline access. We have implemented an AnDrone prototype
based on Raspberry Pi 3 drone hardware. We demonstrate
that it incurs minimal runtime performance and energy over-
head, supports real-time virtual drone flight control, and runs
untrusted third-party software in virtual drones in a secure
manner while ensuring that the service provider maintains
control of the drone hardware.
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1 Introduction

Recent advancements in drone technology have allowed the
use of drones, unmanned aerial vehicles (UAVs), in applica-
tions from aerial photography to package delivery, as well as a
wide array of surveying, inspection, and security applications.
Smaller, feature limited consumer drones have become more
affordable and user-friendly, but still maintain a steep learning
curve, requiring significant time investment before becoming
proficient in their use and remain prohibitively expensive for
infrequent use. Larger and more capable drones remain expen-
sive and out of reach for most consumers, both in terms of cost
and complexity. For all drones, users must learn and follow reg-
ulations such as where drones can and cannot fly, registration,
and licensing, increasing the burden placed on users wanting
to use a drone, particularly those with only the occasional use
for them. As drone usage continues to rise [66], it is likely that
these burdens will only further increase as the need to manage
limited airspace only grows. These operational costs coupled
with the limited flying time available with most drones due to
energy constraints make the time that a drone is actually fly-
ing quite valuable. Each flight should be leveraged to its fullest
to offset these costs, but despite this, drones today are typically
monotasking with a single task assigned for each flight. Given
two tasks, there will be two separately owned drones used,
each requiring proficient operators and airspace to operate,
even if the two tasks would involve the same flight path.

To address these challenges and make drones more widely
available, we introduce AnDrone. AnDrone is a drone-as-a-
service solution that makes drones accessible in the cloud to in-
terested third parties. With companies like Amazon, UPS, and
DHL investigating mass rollouts of delivery drones [4, 27, 65],
AnDrone can enable these drones to also be made available
to interested third-parties via the cloud to provide additional
services. A drone previously tasked with a simple delivery
can now simultaneously survey vehicle traffic conditions for
alocal news company while en route to a delivery, routinely
survey a construction site’s progress, or photograph a prop-
erty for a real estate agent. AnDrone enables these use cases
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without requiring the user to obtain additional hardware or
have in-depth knowledge about drones.

AnDrone provides third-party users with lightweight vir-
tual drones that can be configured in the cloud with various
apps and services of interest to a user, then safely deployed and
multiplexed on real drone hardware. With AnDrone, multiple
third-party virtual drones may run simultaneously and contin-
uously throughout a single physical flight as the drone travels
from one waypoint to another. At each waypoint, the virtual
drone can be given control of the drone and additional device
access can be granted allowing the virtual drone to complete
any required tasks. AnDrone takes advantage of the observa-
tion that computational costs on drones are cheap compared
to the operational and energy costs of putting drones in the air,
making it is very efficient to multiplex multiple virtual drones
on aphysical drone to maximize the utility of drone flight time.

AnDrone introduces a novel Linux container architecture
to support and isolate different drone execution environments.
Unlike, traditional hardware virtualization approaches [13,
15,16, 24], AnDrone’s lightweight container approach [45, 52]
pairs well with drone hardware that tends to lack hardware
virtualization support and be resource constrained given size,
weight, power, and cost considerations. Each virtual drone
has its own containerized Android Things environment with
which to run its tasks and can provide online interactive ac-
cess to the drone during flight. AnDrone utilizes Android
Things [35] to offer users a familiar and well-known environ-
ment with many existing apps, and developers the ability to
leverage a large existing base of code, libraries, development
tools, and resources, all tailored for Internet of Things (IoT)
systems such as drones. To control physical device access to
isolate virtual drones from one another and preserve drone
hardware safety, AnDrone introduces a device container for
managing and multiplexing device access and a real-time
Linux flight container for drone flight control.

The device container isolates devices from virtual drones
by encapsulating all physical drone devices in a separate iso-
lated execution environment. Only the device container has
access to physical devices, allowing it to be used to gate and
multiplex access to those devices from virtual drones. Iso-
lating devices in their own execution environment is made
possible by leveraging how apps in Android Things interact
with devices via higher-level system services [12]. These ser-
vices allow apps to be transparently decoupled from low-level
device implementations and interfaces so that devices can
be separated from the rest of the Android Things execution
environment. Unlike other container-based hardware mul-
tiplexing approaches [6], our approach requires no explicit
per-device support, significantly reducing the effort needed
to support new platforms and devices. The device container
further creates the illusion for the physical devices that each
such device is only being used by one task at a time, providing
easy compatibility with existing drone-specific software and

hardware stacks which are often not designed to support mul-
tiplexing. By allowing virtual drones to remain independent
of physical devices, they can also be easily moved as needed
to different physical hardware.

The flight container mirrors the device container approach
and isolates the critical real-time flight software stack from
virtual drones by encapsulating all flight control logic in a
separate isolated execution environment. Only the flight con-
tainer has access to the physical hardware for flight control,
allowing it to be used to gate and multiplex access to flight
control from virtual drones. The flight container also allows a
different execution environment for the flight software stack,
which is crucial for software compatibility as it is based on
real-time Linux, not Android. A simple network proxy-based
approach enables Android Things virtual drones to interop-
erate with the real-time Linux flight container.

AnDrone leverages its device and flight containers to pro-
vide location-based and conditional drone control. Access
to devices such as cameras, camera gimbals, sensors, and
GPS can be conditionally granted to virtual drones. Similarly,
virtual drones can be geofenced and restricted to operating
within a defined set of control parameters. This is used to
provide device isolation among virtual drones; a virtual drone
restricted to operate in one locale can be prevented from op-
erating in another. This is also used to provide operational
safety, for example disallowing overly aggressive maneuvers
and enforcing obstacle avoidance. Drone providers can cus-
tomize the degree of control a user is given over a drone, even
restricting it to only operating in a guided mode wherein the
drone can only be given destination coordinates and a velocity
with which to reach it. With various device restrictions possi-
ble, multiple third parties may securely run tasks throughout
a single flight and operate a drone in-turn, without interfer-
ence with each other or the flight stack, fully maximizing the
potential of a drone’s flight.

We have implemented an AnDrone prototype support-
ing multiple Android Things virtual drones on drone hard-
ware based on the Raspberry Pi 3 Model B [60] and Emlid
Navio2 [30] daughterboard. Our experimental results demon-
strate runtime performance overhead of less than 1.5% for a
single virtual drone, a negligible effect on drone energy usage,
the ability to multiplex multiple virtual drones while ensuring
low-latency performance within 300ps of an idle system and
sufficient to meet the real-time requirements of drone flight,
and that untrusted third-party software may run in virtual
drones without undue risk to the physical drone.

2 Usage Model

With AnDrone, users with little to no drone experience can
obtain a virtual drone equipped with premade apps to control
the drone to accomplish a desired task. For basic drone service,
users interface with the AnDrone web portal to order and con-
figure a virtual drone, AnDrone assigns the virtual drone to a



physical drone to perform the desired task, then the data from
the drone is uploaded back to the AnDrone web portal for the
user to access. More advanced options are also available, for ex-
ample to provide interactive control of the drone during flight.

To order a virtual drone, a user accesses the AnDrone web
portal, shown in Figure 1, selects one or more way waypoints,
locations where the drone should go, and specifies a desired
date and time range for using the drone. A list of possible drone
types available is then presented for selection, e.g. drones spe-
cializing in obtaining video, drones equipped with specialized
sensors, etc. Apps can then be uploaded on to the virtual drone,
including by selecting from existing apps available in the An-
Drone app store. For example a real estate agent who wants
aerial photography of a house can go to the AnDrone app
store and find an app that will do this. It could be a basic app
that simply circles a geographic location, a more advanced
app leveraging computer vision to obtain better results, or
even a service-based app offering another company’s pilot to
manually obtain results. AnDrone leverages Android Things
to make it easy for both app developers and users to build on
a familiar and established app ecosystem.

Once an app has been selected, the user will use the portal
to supply the app with any arguments it requires, e.g., an area
on a map to survey. Any further interaction with the drone
or app after take off is app-specific. The app may supply a
front-end that the user can run on their smartphone or in a
web browser to see additional status information or make
additional input, or it may act fully autonomously and simply
offer the user files it generates. The virtual drone will return
flight control once it has completed its task. The user will be
informed once the drone has finished its flight, and emailed
alink to any files the app generated for them.

If a user requires more advanced functionality, direct access
to the virtual drone can be provided instead of just specifying
an app to run. When ordering a virtual drone for advanced us-
age, the user also specifies any devices they need access to and
whether they need access to those devices both at and between
waypoints or just while operating at a waypoint. If immediate
usage is requested of a virtual drone, AnDrone will provide
the user with an estimated operating window of when to ex-
pect the drone to arrive at the first waypoint so the user can
then take over control of the drone. If the user is flexible with
regard to when the drone launches, AnDrone will provide an
estimated operating window a day in advance of the flight to
confirm if it is acceptable to the user. Once the drone takes off,
the user is notified via email or text message and the portal
provides provides access information for the virtual drone, no-
tably its IP address and port information and how the user may
connect to it, much like any recently deployed cloud-based
server. The user can then access the virtual drone remotely and
run tasks on the virtual drone throughout the entirety of its
flight, but flight control is only provided to the user at the spec-
ified waypoints of the virtual drone. If flight control is not re-
quested ata waypoint, AnDrone will simply fly the drone on to
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Figure 1. Snippet of the AnDrone web portal interface

the next waypoint after arrival. Such waypoints are useful to,
e.g. guide a virtual drone along a highway to survey traffic. If
flight control is given, the user may return control of the drone
at any time via the portal or an app running in their virtual
drone. Like other Android systems, device access is provided
by Android drone apps. For example, an app running on the
drone can forward the camera feed to a client app running on
the user’s smartphone. All communication between the drone
and the user takes place via a cellular internet connection.

It would be unsafe to not enforce restrictions on a virtual
drone’s control of a physical drone. So once AnDrone hands
over control to the virtual drone, the drone is geofenced and
restricted to operating within a defined set of control parame-
ters. The extent of these restrictions is flexible and can include
multiple aspects of drone flight. For example overly aggressive
maneuvers can be disallowed, forced obstacle avoidance can
be added, flight modes can be restricted, etc. This allows for a
range of functionality varying from allowing users full control
of the drone with only basic restrictions on extreme maneu-
vers, to only allowing the drone to operate in a mode such
that it is given destination coordinates and a velocity with
which to reach it. With such restrictions the drone can still be
pathed wherever the user wants, but always in a predictable
manner. The size of the geofence that is applied to the drone
is requested by the user up to a maximum size when ordering
the drone via the AnDrone portal, with a default size provided.

In addition, AnDrone’s containerized design in combina-
tion with its device access control ensures privacy and isola-
tion among virtual drones. For example, it is possible that a
user A’s virtual drone has multiple waypoints and requests
access to devices such as the camera while the drone is oper-
ating between them. While routing between these waypoints,
another user B’s virtual drone waypoint may be visited. In



such cases, for privacy and conflicting device control reasons,
user A’s device access will be suspended by default until the
drone has finished at user B’s waypoint. AnDrone assumes
that a user would generally not want another party to have
access to the drone’s camera or microphone while operating
at the user’s waypoint.

Like all cloud resources, AnDrone billing is based on usage,
but unlike, e.g. a cloud server where time can be used as the
billing unit, a drone’s flight time is limited and can vary greatly
with both the type of drone and how the drone is operated.
AnDrone can bill traditional cloud services such as storage or
network bandwidth based on regular usage, but bills drone
usage based on energy consumption, like a traditional energy
utility service. Energy is used for billing drone usage because
of its direct correlation with the most critical resource for
drones, as well as the ability to leverage the familiarity of en-
ergy utility pricing. Estimates of flight time based on energy
usage [17, 25, 29, 42, 64] are provided to the users when order-
ing a drone and the user’s specify a maximum billing charge,
which in turn specifies the maximum energy the user’s drone
can consume at their waypoints.

It is possible that the task a user wishes to perform (either
via an app or direct access) is unable to be completed on a
drone for various reasons, including exceeding the user’s max-
imum billing charge or unpredictable events such asinclement
weather. In these cases, virtual drones are instructed to save
their current state so that they can be resumed on a later flight.

3 Virtual Drone Definition

To be able to place a virtual drone on a physical flight the
following must be known about it: where it is to operate, how
much energy it may use, how long it can operate, which de-
vices are needed, when those devices are needed, and what
apps should be installed and run. To accomplish this, AnDrone
defines a virtual drone as a JSON specification in combination
with an Android Things container image. Upon receipt of
a new virtual drone JSON specification, AnDrone creates a
clean Android Things container and installs any specified
apps in it. From then on, the JSON specification and container
defines the entirety of the virtual drone. A virtual drone def-
inition is fully self-contained and can be easily reinstated on
any drone or even non-drone hardware so long as the CPU ar-
chitecture matches and the kernel is equipped with Android’s
kernel features. Each virtual drone container image consists
only of its differences from a base virtual drone image, allow-
ing for minimal storage requirements when running multiple
virtual drones and storing them offline.

Figure 2 is an example of an AnDrone virtual drone JSON
specification, which has seven components. First, the specifi-
cation has a list of waypointsa virtual drone is to visit, each of
which is defined by a desired latitude, longitude, altitude, and
max-radius in meters, which defines a spherical volume from
the given waypoint coordinates. Together these parameters

{
"waypoints": [

{ "latitude": 43.6084298,
"longitude": -85.8110359,
"altitude": 15,

"max-radius": 30

1,

{ "latitude": 43.6076409,
"longitude": -85.8154457,
"altitude": 15,

"max-radius": 20

}

1,

"max-duration": 600,

"energy-allotted": 45000,

"continuous-devices": [

1,

"waypoint-devices": [
"camera",
"flight-control"

]

"apps": [ "com.example.survey.apk" ],

"app-args": [

{ "com.example.survey": {

"survey-areas": [

{ "43.6084298,-85.8110359": [
[43.6087619, -85.81041107,
[43.6087968, -85.8109877],
[43.6084570, -85.8110225],
[43.6084240, -85.8104646]

1,
{ "43.6076409,-85.8154457": [
3

Figure 2. Virtual drone definition for example construction
site surveys

define a geofence that will be applied to the virtual drone’s
control of the real drone, if flight control has been requested.
Max-duration in seconds and energy-allotted in joules com-
bine to specify the maximum time and energy allotted for the
virtual drone to operate at all of its waypoints, whichever is ex-
hausted first dictating when control must be taken away. Max-
duration is specified in such cases where virtual drones are al-
lowed toland, thus preventing them from idling on the ground
indefinitely. Continuous-devices specify the list of devices that
the virtual drone should have access to continuously once its
first waypointis reached until it completes operation at its last
waypoint. Waypoint-devices specify the devices that the vir-
tual drone should have access to only while operating at way-
points. Waypoint-devices are prioritized above continuous-
devices, so continuous-device access is susceptible to tempo-
rary removal should another party’s virtual drone’s waypoint
be visited in between specified waypoints. Flight control can
only be specified as a waypoint device, not a continuous de-
vice. Apps specifies a list apps that should be installed in the
virtual drone’s container. App-args specify the arguments that
should be passed to apps when they are started as given by
the user when the drone was ordered via the AnDrone portal,
in this case being sets of latitude and longitude pairs defining
geographic regions that will be surveyed for each waypoint.
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4 AnDrone Architecture

To support virtual drones, AnDrone pairs a cloud service
for configuring, allocating, and storing virtual drones offline,
with an onboard drone virtualization architecture to safely
share physical drone hardware during flight while restricting
access to the drone overall to secure it from untrusted third
parties. Figure 3 shows the overall architecture of AnDrone.
We provide a brief overview of the cloud service, then focus the
rest of our discussion on the drone virtualization architecture
components and how they interact with the cloud service.
As shown in Figure 3, the cloud service has five compo-
nents: the AnDrone web portal users use to order their virtual
drones, the AnDrone app store that provides apps for vir-
tual drones, general storage for drone flight data, a virtual
drone repository (VDR) which stores preconfigured virtual
drone definitions for later use or reuse, and a flight planner
which allocates virtual drones to physical drone flights and
autonomously pilots drones from waypoint to waypoint. An-
Drone’s flight planner is based on the multirotor drone energy
consumption model and the drone delivery routing algorithm
developed by Dorling, et al. [29] for assigning deliveries to a
fleet of drones to minimize delivery time subject to a drone
fleet size constraint. AnDrone assigns virtual drones to phys-
ical drones using this model and algorithm by specifying the
drone fleet size, using waypoints as delivery locations, and
adjusting the energy cost to account for the energy allocated
for virtual drones at their waypoints. A limitation of the al-
gorithm is that it treats all waypoints independently, so users
may not prescribe that waypoints be traversed in a specified
order and the algorithm may decide to visit waypoints of one
virtual drone in the middle of a set of waypoints of another
virtual drone. Providing a planner algorithm that can support
waypoint ordering and grouping is an area of future work.
During flight, the cloud service communicates with drones
over cellular internet as current LTE performance is already
sufficient for cellular based drone control [58]; future cellular
technology is being developed with mission critical drone us-
age in mind [57]. Figure 4 shows the workflow of an AnDrone
flight and where each cloud service component is involved.
The onboard drone virtualization architecture is built on a
Linux operating system (OS), given that drones are primarily
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Figure 4. AnDrone workflow

ARM-based and Linux is the dominant OS for ARM devices.
To enable running multiple virtual drones alongside a real-
time Linux-based flight stack, AnDrone’s virtualization ar-
chitecture uses Linux containers to support running multiple
variants of Linux at the same time, including Android Things.
AnDrone containerizes all Linux instances to provide isola-
tion among them and manage their resources as necessary to
ensure the reliability and performance of all containers. To
provide real-time support for containers, AnDrone’s Linux
kernel is augmented with the PREEMPT_RT [47] patches to
make it fully preemptible to minimize latencies for real-time
tasks. Remote access to containers is provided by tunneling all
communication over a per-container virtual private network
(VPN), allowing potentially insecure protocols, such as those
used by drone flight controllers, not originally intended for
use across the Internet to now be used securely over cellular
internet communication.

By relying on containers instead of traditional hardware
virtualization [19, 22-24, 46], AnDrone removes the need to
emulate numerous sensor devices, potentially introducing
unacceptable latencies, and expands hardware compatibility
to devices without hardware virtualization support. This is
essential since due to the size, weight, power, and cost con-
siderations drone hardware tends to be resource constrained
and lacking the virtualization capabilities familiar to server
hardware where virtual machines are commonly used. Addi-
tionally, AnDrone is able to maximize the limited resources of
drone hardware by avoiding the need to run multiple full OS
instances. By leveraging Android Things, an Android variant
specifically designed for resource constrained IoT devices, An-
Drone offers app developers a well-known environment and
off-the-shelf reuse of Android apps and code inside a minimal,
more resource-efficient OS than stock Android. Additionally,
with out-of-the-box support for single board computers like
the Raspberry Pi, Android Things offers better hardware sup-
port than stock Android for devices commonly used in drones.

As shown in Figure 3, the virtualization architecture has
four main components: the virtual drone containers loaded
onto the drone hardware, a device container for multiplexing
device access, a flight container for virtualizing and multiplex-
ing flight control, and a virtual drone controller (VDC) that
manages virtual drones. We discuss each of these components
in further detail below.



4.1 Virtual Drone Containers

Each virtual drone container appears to applications as an
independent Android Things instance which is isolated from
other virtual drone instances. For efficiency on the drone,
virtual drone containers are managed using Docker [28] so
that each container consists of common read-only base disk
images layered together with a writable layer on top [54-56].
Common read-only base disk images can be shared across
virtual drones, making virtual drones easier to manage and
reducing storage costs. Docker also simplifies management
by providing built in commands that enable AnDrone to eas-
ily move virtual drones back to the cloud and to other drone
hardware as well as store them offline in the cloud. In addi-
tion, Docker enables AnDrone to prevent abuse and excessive
consumption of resources, which can interfere with other
virtual drones by allowing AnDrone to place restrictions on
the resources each virtual drone can use.

While Docker is useful for supporting multiple Android
Things virtual drones, it is not sufficient. Unlike traditional
desktop and server computing environments, Android, and
platforms that it runs on such as smartphones and IoT systems,
incorporate a plethora of devices that applications expect to
use. Some devices can be easily virtualized because they need
not provide much of the original device functionality. For
example, Android cannot be run without a graphical user
interface and expects to be able to access a framebuffer device.
Since drones are headless, the framebuffer contents are not
actually displayed. In this case, each container can be simply
given a virtual framebuffer device to use rather than the real
one, and the virtual framebuffer device can just be a memory
region in which contents can be written. No actual hardware
device support is needed. However, for more complex devices
that actually need to provide full featured functionality, ex-
isting approaches provide no effective mechanism to enable
apps to directly leverage these device features from within
virtualized environments, whether they be traditional vir-
tual machines (VMs) or Docker containers. These devices
are instead intended to be used directly by a single Android
instance and cannot be used by multiple instances simulta-
neously, which AnDrone requires for supporting multiple
simultaneously running virtual drones.

One key Android device is not actually a hardware device,
but a software abstraction, namely Android’s Binder inter-
process communication (IPC) device. Binder is a software
abstraction that functions as Android’s primary IPC mech-
anism and is utilized by processes via various ioctl system
calls. Binder inherently provides isolation as no communi-
cation can occur between a client and a service without first
obtaining a handle to that service; services exist as nodes that
clients reference via an integer-based per-process handle. To
obtain a handle to a node, a client must be given it by the
node itself or someone who already has a handle to that node.
In Android, services register themselves with the userspace
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Figure 5. Android Binder service communication

ServiceManager, Binder’s Context Manager, which itself is
always obtainable through Binder via the handle 0. The Ser-
viceManager retains a mapping of handles to corresponding
names of services given at registration time. Apps can obtain
handles to desired services by requesting a reference from
the ServiceManager, as shown in Figure 5. Binder only allows
one Context Manager, which offers handles to all services.
However, AnDrone runs multiple virtual drone containers,
each an Android Things instance, and each expecting to be
have their own Context Manager offering their own services.

To achieve this, we add device namespaces [5, 6, 21] to
Binder to isolate the Context Manager to a per-container
level, allowing each virtual drone instance to have its own
Context Manager. When a ServiceManager registers as a Con-
text Manager, Binder identifies the container from which the
ServiceManager registers so that subsequent references to the
container’s handle 0 will reference the respective container’s
own ServiceManager instead of one global one. Since Binder
does not allow access to services without access to their re-
spective handles, the end result is that each container’s clients
and services are isolated from those in other containers.

While device namespaces are useful for enabling the Binder
device to operate in the context of virtual drone containers,
this is not as useful for actual hardware devices that need to
deliver full functionality, in some cases involving complex
and proprietary device drivers. Augmenting these complex
implementations with device namespaces would be problem-
atic both due to complexity and lack of availability of source
code. While a virtual device could be introduced, it would still
need to provide access to the actual hardware device function-
ality and could not simply be a dummy virtual device, which
comes around to the original question of how to multiplex
the hardware device among virtual instances.

4.2 Device Container

Unlike traditional desktop and server systems, Android IoT
systems are highly vertically integrated in which several lay-
ers of software are involved on a given system to offer a tall
interface from apps to hardware devices. Apps are written in



Service Device(s)

AudioFlinger Microphone, Speakers
CameraService Camera
LocationManagerService | GPS

SensorService Motion, Environmental Sensors

Table 1. Listing of device container services

Java and call Java frameworks, which function as libraries that
provide the core public APIs used by developers for Android
functionality including accessing devices. Frameworks use
Java Native Interface (JNI) to package up calls and pass them
through Android’s Binder IPC mechanism to communicate
with Android system services, which are system processes
that run in the background and are used to manage devices.
Apps do not interact with hardware devices directly, but in-
stead via system services.

Ideally, these device services can be used to multiplex hard-
ware for multiple containers as they are already designed to
multiplex access to hardware devices from multiple processes.
In a vanilla Android instance, system services would run as
part of the Android instance. However, with multiple Android
instances, this cannot be done as running multiple system
services, each directly accessing devices, would cause con-
flicts. Alternatively, running multiple system services would
require an additional mechanism injected below system ser-
vices in the middle of a complex device stack to somehow
multiplex their access to hardware devices, which would be
a difficult challenge.

To solve this problem, AnDrone introduces a device con-
tainer, a special container running a minimal Android instance
with direct access to hardware devices to run Android’s device
services. Only a single set of system services are run, just like
a vanilla Android instance, and AnDrone leverages the multi-
plexing functionality in system services to support access to
system services and their underlying devices from multiple
virtual drone containers. System services are centralized in
the device container and removed from all virtual drone con-
tainers. AnDrone then makes these services available in all
virtual drone containers in place of their own.

To allow virtual drones to use the device services running
in the device container, those services need to be registered
with each virtual drone’s ServiceManager so that the respec-
tive ServiceManager can provide a reference to the desired
device service when requested by an app. To support this
cross-container service registration, we add a new ioctl to
the Binder driver, PUBLISH_TO_ALL_NS, callable only by the
device container for security. Figure 6 shows how the ioctl is
used. When the device container’s ServiceManager receives
anew service registration request, it checks to see if the ser-
vice name is in a pre-specified list of services that are to be
shared as shown in Table 1. If the service name is in the list,
the ServiceManager calls this ioctl to publish it in all running
virtual drone containers. The ioctl then takes the service name
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Figure 6. Device container service publishing process

and handle passed to it and checks all other containers for
existing ServiceManagers. The presence of a ServiceManager
indicates that the container is a virtual drone running Android
Things. The ioctl then makes its own registration call to these
existing ServiceManagers with the provided name and han-
dle, thus registering the device container’s service inside the
virtual drone container. The same process will be performed
in the future for any newly created virtual drone containers.
AnDrone also disables the equivalent device services inside
the virtual drone containers from starting by modifying init
files and Android’s SystemServer, a process responsible for
starting many services. When an app in any virtual drone
container asks for a reference to one of the shared services, the
respective ServiceManager will return a reference to the sin-
gle service running inside the device container. Once the app
has the reference to the shared service, it can communicate
with it via Binder the same as if it were in its own container.
All communication with the device services listed in Table 1
is fully encapsulated in Binder messages or by using a file
descriptor shared via a Binder message.

Although device services are now available in virtual drone
containers, a service must also allow apps to use it. In Android,
a service asks the ActivityManager if the calling app has per-
mission to use it. This means that a device service will ask
the device container’s ActivityManager for permission rather
than the calling container’s ActivityManager, which will be
problematic because the device container’s ActivityManager
will not be aware of the permissions for apps running outside
of the device container. To address this problem, we add one
more new ioctl to the Binder driver, PUBLISH TO DEV_CON.
We modify each container’s ServiceManager to call this ioctl
when its respective ActivityManager registers itself with the
ServiceManager, as shown in Figure 6. The ioctl appends the
ActivityManager service name with the container identifier
and registers it with the device container’s ServiceManager.
We then modify Android’s native and Java checkPermission()
functions in the device container to request the calling con-
tainer’s ActivityManager from the device container’s Service-
Manager, as identified by the modified service name. To allow
services to identify the calling container so that it can perform
this check, we make a small modification to Binder to include
the calling process’ container identifier in its transaction data
structure alongside the existing calling process’ PID and EUID.



AnDrone’s device container model introduces minor ad-
ditional risk by sharing several services among all of the
containers, breaking isolation for those specific services. We
deem this an acceptable trade-off as these services are already
meant to be used by untrusted apps and thus are already hard-
ened. Billions of active Android devices help demonstrate how
secure these already are. Note that our approach does not add
any security risk beyond existing Android configurations
which share device services among apps. Compared to a stan-
dard Android environment with dozens of shared services,
AnDrone’s shared services represent an order of magnitude
reduction in attack surface via system service exploitation.
Even if a vulnerability were found in one of the shared device
services, it does not fully compromise virtual drones or the
whole of the device container and would depend on the device
service vulnerability. In the worst case, if the flight controller,
discussed in Section 4.3, is running on shared hardware with
the virtual drones and the GPS or SensorService are compro-
mised, stability and control of the flight can be compromised
by the attacker. However, these two services are relatively sim-
ple compared to other system services and to the best of our
knowledge, and after areview of Android’s Common Vulnera-
bilities and Exposures (CVEs), have never had significant secu-
rity vulnerabilities discovered in them. Section 4.3 discusses
how this additional risk to flight control can be mitigated.

4.3 Flight Container

A drone’s flight is controlled via a flight controller. The flight
controller is commonly a native Linux daemon running on the
drone itself that is responsible for both stabilizing the drone
and accepting commands for maneuvering it. Communication
with the flight controller commonly takes place via the Micro
Air Vehicle Link (MAVLink) protocol, allowing a ground sta-
tion or app to have full control of the drone via any underlying
medium. To support AnDrone’s usage model, we must be able
to multiplex the flight controller among virtual drones as well
as between virtual drones and the cloud-based flight planner.
To address this problem. AnDrone introduces a flight con-
tainer for running the flight controller in its own standard
Linux container, isolating and prioritizing it over virtual drones
due to its mission critical importance. We leverage and modify
MAVProxy [7], a portable, minimalist ground control station
with MAVLink proxying capabilities, to allow multiple clients
to connect to the flight controller. MAVProxy acts as an in-
termediary between clients and the flight controller, which
provides an indirection mechanism to virtualize the flight
controller. AnDrone uses MAVProxy to give the cloud-based
flight planner full native access to the flight controller, but
presents each virtual drone with its own virtual flight con-
troller (VFC) to control the degree of flight control allowed.
MAVProxy provides a standard unrestricted flight controller
connection for the flight planner and service provider to use,
and a VFC connection for each virtual drone which restricts
the flight control commands that will be accepted and presents

a virtualized view of the drone that differs from that of the
physical drone. The extent of the restricted commands is con-
figurable via a whitelist of MAVLink commands available
as a number of preconfigured whitelist templates which are
customizable by the service provider. The most restrictive
template available will only allow the drone to operate in
guided mode wherein only a desired GPS position may be
given. The least restrictive template allows for full control of
the drone so long as it remains within the geofence.

A virtual drone can connect to its VFC at anytime through-
outa flight, but until a virtual drone’s waypoint is reached, the
VEC presents a view of their drone as idle on the ground at the
waypoint to indicate it is inactive and declines any commands
sent to it. As the real drone approaches a waypoint, the virtual
drone presented automatically takes off to meet the physical
drone’s position. Once the real drone’s position is met, the
virtual flight controller begins to accept commands. The com-
mands sent to it from this point on will control the physical
drone, but the drone is both geofenced and the commands
that the VFC will accept are restricted. The exception to this
virtualized view is if the virtual drone has continuous access
to devices while operating between its waypoints. To prevent
a discrepancy between the view of the drone and device read-
ings, the actual drone’s position is given, but commands are
still declined until a waypoint is reached. Once the virtual
drone is finished with flight control, or is forced to finish, the
VFC again refuses to accept commands and presents the drone
aslanding, where it stays for the remainder of the flight. Mean-
while the physical drone is piloted on to the next waypoint.

MAVLink and flight controllers already support contain-
ing drones with geofences, but the action taken when the
geofence is breached is to perform a failsafe landing. For An-
Drone, this behavior is undesired as the flight must continue
so that other virtual drones may operate and eventually re-
turn to base. We augment the geofence support such that a
breach causes the following steps to be performed: inform
the virtual drone of the breach, disable commands on the
VFC connection, guide the drone back inside the geofence,
and switch it into loiter mode to hold its current position.
Flight control is then returned to the virtual drone. With this
approach, geofence breaches can be safely handled without
interruption to the overall flight.

To run the flight container on the same hardware as the
virtual drones, the flight controller must also have access to
hardware devices, such as the GPS, which are controlled by
and must be accessed via the device container, just like any
other virtual drone. However, the device container provides
Android-based service interfaces, which are not supported
by native Linux. AnDrone introduces additional hardware
abstraction layer (HAL) support to the flight container to pro-
vide a Binder based bridge between the controller and the
device container’s device services. Adding HAL support for
sensor devices, e.g. barometer, is straightforward since sensor
access is supported via the Android Native Development Kit



(NDK). However, the NDK does not provide access to GPS, so
anative interface for Android’s LocationManagerService had
to be created.

Although the flight stack is isolated from virtual drones
by containerization, it is still vulnerable to kernel-level faults
and vulnerabilities. When sharing hardware with the flight
controller, a bug or intentional kernel crash can result in loss
of control of the drone. This potential risk is not unique to a
shared environment and the risk of a kernel crash is typically
handled through additional failsafe mechanisms. For exam-
ple, the Emlid Navio2 daughterboard includes a failsafe in the
on-board microcontroller [68]. This risk can be removed by
running the flight controller on separate hardware if desired.

4.4 Virtual Drone Controller

To manage virtual drones, AnDrone provides a Virtual Drone
Controller (VDC). The VDC is a daemon running natively on
the host OS of the physical drone responsible for managing
virtual drone containers. Prior to each flight, the flight plan-
ner sends the VDC the virtual drone definitions assigned to
it. The VDC creates containers for each virtual drone to run
as, or if resuming a previous virtual drone flight, obtains the
existing virtual drone from the VDR. Once a flight is com-
plete, if a virtual drone is unable to complete its task prior to
exhausting its allotted energy or must be interrupted due to
unpredictable reasons such as inclement weather, the VDC is
responsible for storing the virtual drone, including its updated
container image, in the VDR at the end of a flight so that it
may be resumed on a later flight. Although checkpoint-based
migration is likely feasible for virtual drones [39, 44, 51], An-
Drone simply leverages the existing Android activity lifecycle
to facilitate saving and restoring the state of virtual drones so
they can be migrated between physical drones. Android apps
are informed when they are about to be terminated and al-
lowed to save their current state via the onSavelnstanceState()
callback. The apps can then use this saved state when starting
once again to restore themselves as they were prior to being
terminated. All AnDrone apps are expected to support this
standard Android functionality. A virtual drone’s state can
then safely be saved offline as part of its disk image.

The VDC also manages virtual drone device access by ver-
ifying whether or not a virtual drone is allowed access to
a device throughout a flight. This is done by extending An-
droid’s service permission model so that the checkPermission()
function called when a device service queries the Activity-
Manager, as discussed in Section 4.2, also queries the VDC.
The VDC informs the device service if the calling virtual
drone container has permission to use the requested device,
as defined by its virtual drone definition. The flight planner
notifies the VDC throughout the flight once virtual drone
waypoints are reached so the VDC can update its device ac-
cess restrictions. Unlike Android’s service permission model
which only checks permissions when an app first asks to use a
device then allows the app to retain the permissions, AnDrone

must be able to revoke permissions of an app that is actively
accessing a device, e.g. when leaving a waypoint. To avoid
substantial changes to device services to support permission
revocation, AnDrone provides this functionality by asking
apps to voluntarily disable device access. As discussed in Sec-
tion 5, AnDrone apps make use of an AnDrone SDK and are
expected to disable device access upon being informed that
they are no longer accessible via the AnDrone SDK. Since
apps may choose to ignore the permission revocation notifi-
cation, the VDC enforces this by asking each device service
if there are any processes from the given virtual drone still
accessing a device after notification, in which case the VDC
terminates those processes. In a similar manner, the VDC is
queried by the flight container to determine if a virtual drone
has permission to control the flight.

5 AnDrone Apps

AnDrone apps are standard Android apps that are written
just like any other Android app. However, AnDrone apps also
require the ability to interact with AnDrone to know about
events specific to AnDrone, such as when they have arrived
at a waypoint and when they are finished at a waypoint. An-
Drone provides this functionality with a simple AnDrone SDK
that apps can use. Figure 7 lists the AnDrone SDK methods.
A key component of this SDK is the WaypointListener call-
back class, as shown in Figure 8. Apps create an instance of this
class and register it with the AnDrone SDK method register-
WaypointListener()listed in Figure 7. Once registered, the app
can be notified of various AnDrone related events. An app is
notified upon arriving at a waypoint via the waypointActive()
callback. After receiving this callback, the app knows it is now
at the given waypoint, has access to flight control and other
waypoint-specific devices it requested, and is free to perform
its desired task. Upon leaving a waypoint, either voluntarily
or because the maximum time or energy allocation allowed
for the virtual drone has been reached, an app is notified via
the waypointlInactive() callback, indicating flight control and
waypoint-specific device access is about to be removed and
the drone is moving on. The WaypointListener also provides
callbacks informing apps if their virtual drone is running low
on its allotted time or energy allocation via lowEnergyWarn-
ing() and lowTimeWarning(). If the geofence is breached, the
app is informed via the geofenceBreached() callback, and the
app is informed when the virtual drone regains control of
the physical drone by a subsequent waypointActive() callback.
suspendContinuousDevices() is called when approaching an-
other party’s virtual drone waypoint, indicating that access
to devices must be suspended until the other party is finished
at their waypoint, as indicated by a call to resumeContinuous-
Devices(). waypointCompleted(), listed in Figure 7, is called by
an app to indicate it has finished its task at a waypoint.
Figure 7 lists four additional methods for AnDrone apps.
getFlightControllerIP() is used to facilitate connecting to the



void registerWaypointListener(WaypointListener 1);
void waypointCompleted();

InetAddress getFlightControllerIP();

void markFileForUser(String path);

int getAllottedEnergylLeft();

int getAllottedTimeLeft();

Figure 7. AnDrone SDK methods

abstract class WaypointListener {
waypointActive (Waypoint waypoint);
waypointInactive (Waypoint waypoint);
lowEnergyWarning (int remaining);
lowTimeWarning (int remaining);
geofenceBreached();
suspendContinuousDevices();
resumeContinuousDevices();

Figure 8. Simplified WaypointListener class definition

virtual flight controller. markFileForUser() is used to indicate
files that should be made available to the user in cloud storage
after the flight. The final two getAllotted functions allow the
app to obtain the remaining energy and time allotted for the
virtual drone. For advanced end users, who may not be using
an app, AnDrone’s SDK functionality is also made available
to them via a command line utility.

In addition to using the AnDrone SDK, every AnDrone app
must include an XML manifest file, similar to the existing
Android XML manifest file, indicating the requested device
permissions and any arguments it expects from users. The
AnDrone manifest is used by the AnDrone portal and flight
planner to provide information needed as part of ordering a
virtual drone and flight planning. The AnDrone portal reads
app arguments from the AnDrone manifest so it knows what
arguments an app requires from the user when ordering the
virtual drone and prompts the user for these values as part
of the ordering process. The AnDrone flight planner needs
to know which devices are needed by apps in a virtual drone
so it can avoid device access conflicts among virtual drones
and control access to devices during flight. Device permis-
sion requests are declared in the AnDrone manifest much
like existing Android permissions in the Android manifest. A
<uses-permission> tag is used to specify the name and type
of access requested. type can be either that of waypoint for
devices that only need to be accessed at task waypoints, or
continuous for access to devices while also between waypoints.
Arguments the app requires from the user are declared with
an <argument> tag, specifying a name, type of argument, and
if the argument is required.

6 Evaluation

We have implemented an AnDrone prototype and evaluated
it in the context of Linux-based drone quadcopter hardware
shown in Figure 9. The quadcopter uses a DJI Flame Wheel
F450 Air Frame [20], equipped with four T-Motor MN2213
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Figure 9. AnDrone quadcopter prototype

950Kv motors [62] with 9.5" propellers attached, and four Si-
monK 30A electronic speed control units to control the speed
of the motors mounted beneath the frame. The drone is con-
trolled by a Raspberry Pi3 Model B [60] (Broadcom BCM2837,
4x Cortex-A53 1.2 GHz CPU, 1GB RAM) single-board com-
puter (SBC) with an attached Emlid Navio2 [30] daughter-
board drone controller, Raspberry Pi Camera Module v2 [59],
and a SanDisk Extreme 16GB microSDHC card for storage.
The SBC is mounted in the center of the Air Frame and the
entire drone is powered by a Turnigy 5000mAh 3S battery [38]
mounted underneath the SBC. The SBC runs Raspbian [61]
Stretch, the official Linux distribution for Raspberry Pi, as the
host OS, Android Things v1.0.3 in the virtual drone and device
containers, and Alpine Linux [3] v3.7 in the flight container
supporting the ArduPilot Copter [9] v3.4.4 flight controller.

6.1 Runtime Overhead

We first evaluate the performance of AnDrone when run-
ning multiple virtual drones with various workloads. The
first workload we used was the popular Android PassMark
PerformanceTest benchmark [53], which is commonly used
to measure multi-threaded CPU, disk, and memory perfor-
mance of Android systems. PassMark also has 2D and 3D
graphics benchmarks, but we did not run those as Android
Things does not have hardware accelerated GPU support. To
measure how runtime overhead is affected by the number of
virtual drones running, we ran PassMark in each virtual drone
simultaneously with different numbers of virtual drones run-
ning. Docker container resource controls were not used. To
show the impact of different levels of kernel preemptibility,
we measured performance for both the AnDrone default ker-
nel configuration with PREEMPT_RT support enabled versus
the minimally accepted real-time support used by Navio2’s
default kernel configuration with only PREEMPT support
enabled. PREEMPT_RT allows the kernel to be almost fully
preemptible while PREEMPT disallows kernel preempt when
local interrupts are disabled, the latter potentially incurring
higher latencies. We normalized PassMark performance com-
pared to running a single instance of PassMark using stock



Android Things natively on the system without AnDrone,
which does not have PREEMPT_RT or PREEMPT enabled.
Running multiple PassMark instances simultaneously is only
made possible through virtual drones so only a comparison
with a single instance on stock can be made.

Figure 10 shows PassMark results normalized to the per-
formance of stock Android Things running a single PassMark
instance; lower is better. Results are shown for running with
one, two, or three virtual drones in total; three virtual drones
means that all three were simultaneously running the individ-
ual PassMark tests. Three virtual drones running simultane-
ously was the maximum our prototype could support due to
memory constraints. We expect future, more powerful drones
will be able to support more virtual drones. PREEMPT_RT re-
sults are indicated by the “-RT” postfix, while the other results
are for just enabling PREEMPT. With a single virtual drone
running, CPU, disk, and memory performance remained rela-
tively constant with at most 1.5% overhead, demonstrating the
minimal performance overhead of virtual drones. CPU perfor-
mance shows roughly a linear decrease in performance with
alinear increase in the number virtual drones running Pass-
Mark, indicating that runtime overhead does not increase sig-
nificantly with more virtual drones. With three virtual drones,
the PREEMPT_RT kernel performed somewhat worse than
the PREEMPT kernel, indicating some cost associated with
greater kernel preemptibility and more tasks running. On the
other hand, disk and memory performance did not decrease
as much with an increase in the number of virtual drones
running PassMark. Disk performance overhead with three
virtual drones was roughly 2x and 2.2x for the PREEMPT and
PREEMPT_RT kernels, respectively. Memory performance
overhead with three virtual drones was roughly 1.8x and 2.3x
for the PREEMPT and PREEMPT_RT kernels, respectively. In
practice, we expect that more realistic apps will experience
less performance slowdowns as they benefit from multiplex-
ing more variable resource demands.

6.2 Real-time Latency

To demonstrate that AnDrone can provide the flight controller,
ArduPilot, with sufficient real-time latency guarantees in the
presence of various workloads, we ran the commonly used
latency benchmark, cyclictest [63], and configured it to run in
the flight container in the same way as AnDrone runs ArduPi-
lot by locking all memory allocations and assigning its thread
the highest real-time priority. We ran three different work-
loads at the same time as cyclictest and configured cyclictest
to run for 100 million loops to provide sufficient samples to
have a high confidence in encountering worst case latencies.
First, we ran cyclictest on an otherwise idle system to measure
baseline performance. Second, to cause latencies an AnDrone
environment is likely to encounter under heavy load, we ran
cyclictest with three virtual drones running, one idle, one run-
ning PassMark continuously in a loop, and one continuously
running the iperf [37] network throughput test to stress the
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system and generate interrupts. Docker container resource
controls were not used. Finally, to generate an even worse case
latency scenario, we ran cyclictest while stressing all aspects
of the system with the stress [69] workload generator to strain
CPU, memory, I/O, and disk subsystems, and iperf to strain
the network subsystem, both running natively on the host.
For both iperf scenarios, iperf was connected over Gigabit
Ethernet via a network switch to a Lenovo Thinkpad T540p
acting as the iperf server. Stress was configured to run with
four CPU worker processes, two I/O worker processes, two
memory worker processes, and two disk worker processes.
We performed all cyclictests on both the PREEMPT and PRE-
EMPT_RT enabled kernels to compare their performance.

Figure 11 shows the latency of each cyclictest measurement
for these three workloads and two kernel configurations. PRE-
EMPT_RT results are indicated by the “-RT” postfix, while the
other results are for just enabling PREEMPT. The PREEMPT
idle, PassMark, and stress scenarios exhibited maximum laten-
cies of 1,307ps, 14,513ps, and 17,819us and average latencies
of 17us, 44ps, and 162ps, respectively. The PREEMPT_RT idle,
PassMark, and stress scenarios exhibited maximum latencies
of 103us, 382ps, and 340us and average latencies of 10ps, 12ys,
and 16ps, respectively. ArduPilot’s most demanding real-time
requirement is its most frequently run control loop, the fast
loop. The fast loop processes values from one or more iner-
tial motion units (IMUs) and adjusts the motors to maintain
stability and aid in flying the drone. Ardupilot’s fast loop
runs at 400Hz, requiring real-time latencies below 2500ps to
achieve this. The PREEMPT_RT patched kernel demonstrated
latencies well within the requirements of ArduPilot, whereas
the PREEMPT kernel did occasionally fall short. However,
occasionally missing ArduPilot’s fast loop deadline will not
cause significant stability issues [11]. Given this, and the in-
frequency with which the PREEMPT kernel failed to meet
ArduPilot’s requirements, it is likely this kernel configuration
is also sufficient for AnDrone.

To further demonstrate that the stability of the drone is not
compromised with AnDrone, we operated our drone proto-
type at a hover and compared its performance while running
the idle and PassMark scenarios described above. The An-
Drone default PREEMPT_RT kernel was used for these flight
tests. We then analyzed logs of each flight using DroneKit’s
Log Analyzer [2] and compared them using the Attitude Es-
timate Divergence (AED) analyzer. The AED analyzer eval-
uates the flight logs and determines if the flight controller’s
estimated attitude of the drone differs significantly from the
canonical drone attitude, indicating instability if the drone’s
yaw, pitch, or roll diverges more than 5° from the estimates for
longer than .5 seconds. Both scenarios were within normal
divergence.

6.3 Memory Usage

Since available memory is the primary limitation on how
many virtual drones can be run, we quantified the amount of
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memory used by virtual drones. We first measured the mem-
ory usage of AnDrone without any containers, then adding
just the device and flight containers, then starting up from one
to three virtual drones, the maximum supported by our drone
hardware prototype; starting a fourth virtual drone fails due
to lack of memory but does not interfere with other virtual
drones already running. Each virtual drone was idling on its
app launcher screen. Figure 12 shows the memory usage of An-
Drone in these various configurations. The results show that
less than 100MB of RAM is needed to run the VDC and host
OS, roughly 150MB of additional RAM is needed to run both
the device and flight containers in addition to the base system,
and approximately 185MB is needed for each virtual drone.
Although our prototype does have 1GB of RAM, only 880MB
is made available after accounting for peripheral I/O reserved
space and RAM allocated to the GPU for camera functionality.

6.4 Power Consumption

To demonstrate that AnDrone has anegligible effect on energy
usage, we used a Monsoon Power Monitor [50] to measure the
power consumption of AnDrone with the drone at rest, nor-
malized to stock Android Things running on the Raspberry
Pi idling on its app launcher screen. We measured energy
usage using the same system configurations as described in
Section 6.3 for measuring memory usage. Figure 13 shows
the energy usage of AnDrone in these various configurations,
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with all configurations within 3% of stock Android Things.
In absolute numbers, while at idle with three virtual drones
running, AnDrone consumed approximately 1.7W. We also
measured the energy usage when fully stressing the system
using the same stress and iperf workloads used for measuring
real-time latency as discussed in Section 6.2, but the energy
usage was the same, 3.4W, across both stock Android Things
and all AnDrone configurations, so they are omitted from Fig-
ure 13. Both idle and fully stressed system energy usage are in-
significant when compared to the power draw of the rest of the
drone. Even consumer-level drone batteries are rated to allow
apower draw of well over 100W throughout a 20 minute flight.

6.5 Network Performance

Extensive testing and trials by Qualcomm [58] have demon-
strated the feasibility of leveraging LTE for real-time control
of drones beyond visual line of sight. In a field trial consisting
of approximately 1,000 test flights in addition to complemen-
tary simulations, Qualcomm demonstrated LTE’s ability to
support safe drone operation in real-world environments up
to 400 feet above the ground with strong signal availability
at high altitudes, successful handover and lower frequency
of handovers, and comparable coverage to mobile devices on
the ground.

To verify their findings with AnDrone and evaluate control
of a drone over a cellular network, we used USB tethering to



connect our prototype to aNexus 5X smartphone operating on
the T-Mobile cellular network, then conducted various experi-
ments to measure the impact of the cellular network on drone
control. First, we qualitatively compared the control respon-
siveness of flying the drone via a traditional RF-based remote
controller versus using the cellular network. For the latter,
we connected a Microsoft Xbox 360 gamepad to a Lenovo
Thinkpad T540p laptop running the APM Planner 2 [8] ground
station and accessing the Internet via the Columbia Univer-
sity campus WiFi network. We did not notice any significant
difference in control responsiveness when using the gamepad
to operate the drone over the cellular network versus the RF-
based remote controller. To quantify the difference, we set up
a testbed environment with the prototype disconnected from
drone hardware, but still operating on the cellular network.
We then issued roughly 150,000 MAVLink commands over a
12 hour period to the flight controller via the Thinkpad T540p
laptop using a wired Verizon Fios Gigabit Connection to the
Internet. Although the commands did not succeed since the
flight controller was not connected to drone hardware, we
could measure the latency between when each command was
sent and when the flight controller received it. On average,
commands took 70ms to be received with a maximum latency
of 356ms and a standard deviation of 7.2ms. 6 packets were lost
overall. By comparison, the average RF remote control latency
of typical hobby drones ranges from 8ms and 85ms [40, 41].

6.6 Multi-waypoint Flight Simulation

To demonstrate AnDrone as a whole under more extensive
flight conditions, we used the ArduPilot Software in the Loop
(SITL) Simulator [10] to have the AnDrone flight planner de-
ploy virtual drones to various waypoints under simulated
flight conditions. For testing with the SITL simulator, we re-
placed AnDrone’s onboard flight controller with a Lenovo
Thinkpad T540p laptop running its own ArduPilot flight con-
troller using the SITL simulator software instead of real drone
hardware. The virtual drones still communicate with the
flight container’s MAVProxy via their VFC connections, but
MAVProxy communicates with the laptop’s simulated flight
controller instead of the flight controller inside the flight con-
tainer. Similarly, the flight planner communicates with the
laptop as well. With this setup, we are able to capture core as-
pects of AnDrone, such as managing device and flight control
access among virtual drones, but are not able to capture the ef-
fects virtual drones may have on an onboard flight controller
on a real-world flight.

We used this SITL simulator setup to perform an AnDrone
flight with three virtual drones, one running an autonomous
survey app, another running an interactive app allowing re-
mote control of the drone from a Nexus 5X smartphone, and
a third providing direct user access. Upon starting the flight,
the VDC created and started the three separate virtual drones
from their respective virtual drone definitions. Remote con-
sole access was provided for the direct access virtual drone
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at the start of the flight. The flight planner correctly pathed
the drone to the first waypoint for the autonomous survey
app virtual drone. Once at the waypoint GPS, camera, and
flight control was given to the app, which in turn used the
DroneKit [1] API to fly back and forth over a location while
recording video as an app might do for surveying a field. After
calling the AnDrone waypointCompleted() SDK method, the
flight planner pathed the drone to the second waypoint for the
interactive app virtual drone. The app successfully allowed
maneuvering the drone, and an intentional geofence breach
was handled as expected. At the next waypoint, control was
handed to the direct access virtual drone. The APM Planner
base station running on the ThinkPad, as discussed in Sec-
tion 6.5, was used to successfully connect to the virtual drone’s
VEFC. Access to the camera was allowed while at the waypoint
whereas previous access attempts were denied. Finally, the
drone returned to its base.

7 Related Work

Various approaches have been proposed for providing drone
services, though few have been implemented and none of
them support virtual drones. An IBM patent application [36]
describes an autonomous drone service system to allow users
to order specific drone services that will be performed either
autonomously or by a ground-based pilot. Unlike AnDrone,
users cannot perform any service beyond those offered by the
service provider and are not given flight control or access to a
drone. Additionally, such a service requires both a drone and
a pilot for each order, increasing the cost of such services.

UAV as a Service (UAVaaS) [70] is a proposed framework
enabling users to connect to a cloud-based service to use a
drone. Unlike AnDrone, UAVaaS does not give direct access
to drones, but instead supplies users with cloud-based APIs
allowing for control of a drone and access to its device data.
Users connect to a cloud-based UAVaaS Coordinator service,
which in turn connects to a drone. Because of this, all existing
drone and device code is incompatible and new apps and ser-
vices must be written explicitly for UAVaaS. Additionally, as
users interact with the drone through a cloud intermediary
and cannot directly run anything on the drone, applications,
such as autonomous control apps, may not have sufficient
reliability, latency, and bandwidth guarantees to function.
For example, if faced with intermittent networking issues,
an autonomous AnDrone app will remain unaffected while
it conducts its task, whereas any remotely running app will
likely have to abort the flight.

Dronemap Planner [43] provides access to drones for de-
velopers through web services. To achieve this, a cloud-based
MAVLink to WebSocket proxy is created allowing web-based
control over a drone’s flight. Other than MAVLink proxying,
no additional drone functionality is offered and no other de-
vice access is possible. Unlike AnDrone, drones can only be
navigated and exclusive, unrestricted control is always given



to the operator. Any intermittent networking issues will cause
the same problems that occur for UAVaaS.

UAV-Cloud [48, 49] provides middleware that facilitates
developing collaborative drone apps. Various drone resources
such as sensors are made available as cloud-based RESTful
APIs for collaborative drone apps toleverage. Beyond defining
these APIs, little is actually implemented. Unlike UAV-Cloud,
AnDrone’s goal is not to abstract away aspects of a drone for
collaborative apps, but to offer a complete drone-as-a-service
solution making drones accessible in the cloud.

Fly4SmartCity [18, 31] is an emergency-management ser-
vice that offers aerial support to people in need. A user, e.g.
a citizen, requiring aerial support may request it via a mobile
app. A cloud service then dispatches a drone and privileged
users, e.g. police officers, are given web-based access to its
camera feed. Unlike AnDrone, Fly4SmartCity is limited to of-
fering users web-based camera access and is primarily focused
on path planning of city-based drones.

FarmBeats [67] is an IoT platform for agriculture that en-
ables data collection from sensors, cameras, and drones to
facilitate farm analytics. As part of this, FarmBeats leverages
drones connected via an IoT base station, which is in turn
connected to a farmer’s internet connection via a radio link.
These drones map fields, monitor crop canopy, and check for
anomalies. Unlike AnDrone, the primary focus of FarmBeats
isleveraging user-owned drones, and other sensors, to supply
analytical data to the cloud.

Similar to AnDrone’s goal of fully leveraging flight time,
Galois, Inc. has investigated leveraging the spare capacity of
flight controller hardware by porting FreeRTOS to runin a
Xen VM on ARM Cortex A15 based devices [26, 32, 33] so the
VM can be used to run SMACCMPilot [34]. Their approach
suffers from the difficulty of exposing the vast array of sensor
devices available to the VM. There has been no indication that
full support for running SMACCMPilot inside a Xen VM has
been achieved. More generally, there exists ongoing projects
for adding support to both the Xen [13] and KVM [14] for run-
ning VMs with real-time requirements. This could potentially
allow for stronger isolation between a flight controller and
third-party VMs. However, challenges for such a system exist
given both the lack of hardware virtualization support with
drone hardware and the difficulty in supporting and pass-
ing low-latency access to the numerous and diverse sensor
devices to VMs for use by real-time apps.

Like AnDrone, Cells [6] leverages containers to support
multiple Android instances on the same hardware, though
Cells focuses on smartphones and tablets where graphics
support is of key importance. Cells introduces a new type of
namespace for devices to accomplish this, but assumes a more
simplified use case model appropriate for smartphones and
tablets. With Cells, the user interacts with one foreground An-
droid instance at a time, while background Android instances
mostly do not need hardware device access. In contrast, An-
Drone must allow for any virtual drone requiring access to
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physical hardware devices at any time, so more fine grained
access control is needed than what is supported by Cells. De-
vice namespace support can be tedious and error prone as
new devices may require kernel driver modifications. Because
device namespaces require contextual knowledge of how a
device operates to implement support for a given device, sup-
porting opaque peripheral devices without specific kernel
drivers can be a challenge. These devices maintain their con-
text in userspace, communicate through userspace over buses
like Serial Peripheral Interface (SPI) and Inter-Integrated Cir-
cuit (I2C), and the kernel only sees raw reads and writes. In
contrast, AnDrone’s device container design has no such limi-
tation as it operates at the system service level, and requires no
per-device support, significantly reducing the effort required
to support multiple Android instances on new platforms.

8 Conclusions

We have designed, implemented, and evaluated AnDrone, the
first drone-as-a-service solution making drones fully acces-
sible in the cloud. AnDrone introduces virtual drones for the
first time, enabling drone tasks for multiple users to be consol-
idated on the same physical drone and performed during the
same flight. Users can create and configure Android Things
virtual drones in the cloud with various apps and services
of interest, leveraging a large existing base of Android apps,
developers, and resources, which are then safely deployed and
multiplexed on real drone hardware. AnDrone achieves this
by pairing a cloud service with a lightweight virtualization
architecture that introduces a new device and flight container
design for multiplexing drone hardware and managing vir-
tual drone device access, including providing virtual drone
geofenced flight control. Multiple variants of Linux can be
run at the same time, including Android Things virtual drones
together with a real-time Linux flight controller.

We have implemented an AnDrone prototype and used it
together with drone quadcopter hardware based on the Rasp-
berry Pi 3 Model B and Emlid Navio2 daughterboard. Our
experimental results demonstrate runtime performance over-
head of less than 1.5% for a single virtual drone, the ability to
run multiple virtual drones for the first time with performance
that scales linearly with workload without any significant in-
crease in energy costs, and sufficient low-latency performance
for real-time flight controllers while multiplexing multiple
virtual drones. Real-world and simulator-based flight demon-
strations show that virtual drones can run simultaneously
without compromising the stability and safety of the drone.
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